56 results on '"Sotka EE"'
Search Results
2. Genotypic diversity in a non-native ecosystem engineer has variable impacts on productivity
- Author
-
Gerstenmaier, CE, primary, Krueger-Hadfield, SA, additional, and Sotka, EE, additional
- Published
- 2016
- Full Text
- View/download PDF
3. Invasive décor: an association between a native decorator worm and a non-native seaweed can be mutualistic
- Author
-
Kollars, NM, primary, Byers, JE, additional, and Sotka, EE, additional
- Published
- 2016
- Full Text
- View/download PDF
4. Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast
- Author
-
Byers, JE, Gribben, PE, Yeager, C, Sotka, EE, Byers, JE, Gribben, PE, Yeager, C, and Sotka, EE
- Abstract
Invasive ecosystem engineers can have far-reaching effects on systems, especially if they provide structure where none was before. The nonnative seaweed Gracilaria vermiculophylla has proliferated on estuarine mudflats throughout the southeastern US, including areas (South Carolina and Georgia) that historically were extremely low in seaweed biomass. Quantitative field surveys across 150 km of high salinity estuaries revealed that the density of the native onuphid polychaete Diopatra cuprea and the aboveground height of its biogenic tubes, which Diopatra decorates with drifting debris and seaweed, positively influenced Gracilaria biomass. The abundance of Gracilaria epifauna, composed primarily of amphipods and small snails, increased with Gracilaria biomass at many locations in our field surveys. To examine whether epifauna were facilitated by Gracilaria we experimentally manipulated Gracilaria biomass in two locations. Consistent with the field surveys, we found that increasing Gracilaria biomass facilitated epifauna, particularly amphipods and snails. Epifaunal densities on Gracilaria were higher than on a biologically-inert structural mimic of Gracilaria (plastic aquarium alga), indicating that epifauna colonize Gracilaria because Gracilaria provisions both physical structure and a biological resource. We also quantified the seaweedâs net rate of productivity and decomposition. Primary production of Gracilaria was variable, but massive in some areas (up to 200 % net biomass increase in 8 weeks). The seaweed rapidly degraded upon burial in silty sediments (79 % loss in mass within 10 days) and thus may represent an important new addition to detrital foodwebs. As a copious, novel source of primary production, detritus, and desirable habitat for epifauna, Gracilaria has the potential to transform southeastern US estuaries.
- Published
- 2012
5. Coastal upwelling is linked to temporal genetic variability in the acorn barnacle Balanus glandula
- Author
-
Barshis, DJ, primary, Sotka, EE, additional, Kelly, RP, additional, Sivasundar, A, additional, Menge, BA, additional, Barth, JA, additional, and Palumbi, SR, additional
- Published
- 2011
- Full Text
- View/download PDF
6. Sources of invasions of a northeastern Pacific acorn barnacle, Balanus glandula, in Japan and Argentina
- Author
-
Geller, J, primary, Sotka, EE, additional, Kado, R, additional, Palumbi, SR, additional, and Schwindt, E, additional
- Published
- 2008
- Full Text
- View/download PDF
7. Genetic control of feeding preference in the herbivorous amphipod Ampithoe longimana
- Author
-
Sotka, EE, primary
- Published
- 2003
- Full Text
- View/download PDF
8. Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass.
- Author
-
Sotka EE, Hughes AR, Hanley TC, and Hays CG
- Abstract
Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes., (© 2024 The Author(s). Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
9. Co-phylogeographic structure in a disease-causing parasite and its oyster host.
- Author
-
Weatherup EF, Carnegie R, Strand AE, and Sotka EE
- Subjects
- Animals, Gulf of Mexico, Sequence Analysis, DNA, Genotype, Mid-Atlantic Region, Crassostrea parasitology, Crassostrea genetics, Host-Parasite Interactions, Polymorphism, Single Nucleotide, Alveolata genetics, Alveolata classification, Phylogeography
- Abstract
With the increasing affordability of next-generation sequencing technologies, genotype-by-sequencing has become a cost-effective tool for ecologists and conservation biologists to describe a species' evolutionary history. For host–parasite interactions, genotype-by-sequencing can allow the simultaneous examination of host and parasite genomes and can yield insight into co-evolutionary processes. The eastern oyster, Crassostrea virginica , is among the most important aquacultured species in the United States. Natural and farmed oyster populations can be heavily impacted by ‘dermo’ disease caused by an alveolate protist, Perkinsus marinus . Here, we used restricted site-associated DNA sequencing (RADseq) to simultaneously examine spatial population genetic structure of host and parasite. We analysed 393 single-nucleotide polymorphisms (SNPs) for P. marinus and 52,100 SNPs for C. virginica from 36 individual oysters from the Gulf of Mexico (GOM) and mid-Atlantic coastline. All analyses revealed statistically significant genetic differentiation between the GOM and mid-Atlantic coast populations for both C. virginica and P. marinus , and genetic divergence between Chesapeake Bay and the outer coast of Virginia for C. virginica , but not for P. marinus. A co-phylogenetic analysis confirmed significant coupled evolutionary change between host and parasite across large spatial scales. The strong genetic divergence between marine basins raises the possibility that oysters from either basin would not be well adapted to parasite genotypes and phenotypes from the other, which would argue for caution with regard to both oyster and parasite transfers between the Atlantic and GOM regions. More broadly, our results demonstrate the potential of RADseq to describe spatial patterns of genetic divergence consistent with coupled evolution.
- Published
- 2024
- Full Text
- View/download PDF
10. Phenology and thallus size in a non-native population of Gracilaria vermiculophylla.
- Author
-
Krueger-Hadfield SA, Oetterer AP, Lees LE, Hoffman JM, Sotka EE, and Murren CJ
- Abstract
Phenology, or seasonal variation in life cycle events, is poorly described for many macroalgal species. We describe the phenology of a non-native population of Gracilaria vermiculophylla whose thalli are free-living or anchored by decorating polychaetes to tube caps. At a site in South Carolina, USA, we sampled 100 thalli approximately every month from January 2014 to January 2015. We assessed the reproductive state and measured thallus size based on wet weight, thallus length, and thallus surface area from herbarium mounts. Because life cycle stage cannot be assigned using morphology, we implemented a PCR assay to determine the life cycle stage-tetrasporophyte, female gametophyte, or male gametophyte-of each thallus. Tetrasporophytes dominated throughout the year, making up 81%-100% of thalli sampled per month. Reproductive tetrasporophytes varied between 0% and 65% of monthly samples and were most common in warm summer months (July through September) when thalli also tended to be larger. The vast majority of the reproductive thalli were worm-anchored and not fixed to hard substratum via a holdfast. Thus, free-living thalli can be reproductive and potentially seed new non-native populations. Given G. vermiculophylla reproduction seems tied closely to temperature, our work suggests phenology may change with climate-related changes in seawater temperatures. We also highlight the importance of understanding the natural history of macroalgae to better understand the consequence of range expansions on population dynamics., (© 2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
11. The Rhodoexplorer Platform for Red Algal Genomics and Whole-Genome Assemblies for Several Gracilaria Species.
- Author
-
Lipinska AP, Krueger-Hadfield SA, Godfroy O, Dittami SM, Ayres-Ostrock L, Bonthond G, Brillet-Guéguen L, Coelho S, Corre E, Cossard G, Destombe C, Epperlein P, Faugeron S, Ficko-Blean E, Beltrán J, Lavaut E, Le Bars A, Marchi F, Mauger S, Michel G, Potin P, Scornet D, Sotka EE, Weinberger F, Cabral de Oliveira M, Guillemin ML, Plastino EM, and Valero M
- Subjects
- Ecosystem, Genomics, Genome, Gracilaria genetics, Rhodophyta genetics
- Abstract
Macroalgal (seaweed) genomic resources are generally lacking as compared with other eukaryotic taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal genomes is critical to understanding eukaryotic evolution given that red algal genes are spread across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the Archaeplastids. The Gracilariales is a highly diverse and widely distributed order including species that can serve as ecosystem engineers in intertidal habitats and several notorious introduced species. The genus Gracilaria is cultivated worldwide, in part for its production of agar and other bioactive compounds with downstream pharmaceutical and industrial applications. This genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole-genome assemblies for two species (Gracilaria chilensis and Gracilaria gracilis), a draft genome assembly of Gracilaria caudata, and genome annotation of the previously published Gracilaria vermiculophylla genome. To facilitate accessibility and comparative analysis, we integrated these data in a newly created web-based portal dedicated to red algal genomics (https://rhodoexplorer.sb-roscoff.fr). These genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic evolution., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
12. Cryptic mtDNA Diversity of Diopatra cuprea (Onuphidae, Annelida) in the Northwestern Atlantic Ocean.
- Author
-
Sotka EE, Bell T, and Berke S
- Abstract
Marine annelid taxonomy is experiencing a period of rapid revision, with many previously "cosmopolitan" species being split into species with more limited geographic ranges. This is exemplified by the Diopatra genus, which has recently witnessed dozens of new species descriptions rooted in genetic analyses. In the northwestern Atlantic, the name D. cuprea (Bosc 1802) has been applied to populations from Cape Cod through the Gulf of Mexico, Central America, and Brazil. Here, we sequenced mitochondrial cytochrome oxidase I (COI) in D. cuprea populations from the Gulf of Mexico to Massachusetts. We find evidence for several deep mitochondrial lineages, suggesting that cryptic diversity is present in the D. cuprea complex from this coastline.
- Published
- 2023
- Full Text
- View/download PDF
13. A Pleistocene legacy structures variation in modern seagrass ecosystems.
- Author
-
Duffy JE, Stachowicz JJ, Reynolds PL, Hovel KA, Jahnke M, Sotka EE, Boström C, Boyer KE, Cusson M, Eklöf J, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hughes AR, Ivanov MV, Jorgensen P, Kruschel C, Lee KS, Lefcheck JS, Moksnes PO, Nakaoka M, O'Connor MI, O'Connor NE, Orth RJ, Peterson BJ, Reiss H, Reiss K, Richardson JP, Rossi F, Ruesink JL, Schultz ST, Thormar J, Tomas F, Unsworth R, Voigt E, Whalen MA, Ziegler SL, and Olsen JL
- Subjects
- Acclimatization, Animals, Biological Evolution, Biomass, Food Chain, Invertebrates, Ecosystem, Zosteraceae genetics
- Abstract
Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
- Published
- 2022
- Full Text
- View/download PDF
14. The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans.
- Author
-
Gross CP, Duffy JE, Hovel KA, Kardish MR, Reynolds PL, Boström C, Boyer KE, Cusson M, Eklöf J, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hughes AR, Ivanov MV, Jorgensen P, Kruschel C, Lee KS, Lefcheck J, McGlathery K, Moksnes PO, Nakaoka M, O'Connor MI, O'Connor NE, Olsen JL, Orth RJ, Peterson BJ, Reiss H, Rossi F, Ruesink J, Sotka EE, Thormar J, Tomas F, Unsworth R, Voigt EP, Whalen MA, Ziegler SL, and Stachowicz JJ
- Subjects
- Animals, Crustacea, Ecosystem, Oceans and Seas, Predatory Behavior, Zosteraceae
- Abstract
While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass ( Zostera marina ) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.
- Published
- 2022
- Full Text
- View/download PDF
15. Repeated Genetic and Adaptive Phenotypic Divergence across Tidal Elevation in a Foundation Plant Species.
- Author
-
Zerebecki RA, Sotka EE, Hanley TC, Bell KL, Gehring C, Nice CC, Richards CL, and Hughes AR
- Subjects
- Biomass, Poaceae, Wetlands, Ecosystem, Plants
- Abstract
AbstractMicrogeographic genetic divergence can create fine-scale trait variation. When such divergence occurs within foundation species, then it might impact community structure and ecosystem function and cause other cascading ecological effects. We tested for parallel microgeographic trait and genetic divergence in Spartina alterniflora , a foundation species that dominates salt marshes of the US Atlantic and Gulf coasts. Spartina is characterized by tall-form (1-2 m) plants at lower tidal elevations and short-form (<0.5 m) plants at higher tidal elevations, yet whether this trait variation reflects plastic and/or genetically differentiated responses to these environmental conditions remains unclear. In the greenhouse, seedlings raised from tall-form plants grew taller than those from short-form plants, indicating a heritable difference in height. When we reciprocally transplanted seedlings back into the field for a growing season, composite fitness (survivorship and seed production) and key plant traits (plant height and biomass allocation) differed interactively across origin and transplant zones in a manner indicative of local adaptation. Further, a survey of single nucleotide polymorphisms revealed repeated, independent genetic differentiation between tall- and short-form Spartina at five of six tested marshes across the native range. The observed parallel, microgeographic genetic differentiation in Spartina likely underpins marsh health and functioning and provides an underappreciated mechanism that might increase capacity of marshes to adapt to rising sea levels.
- Published
- 2021
- Full Text
- View/download PDF
16. Intraspecific diversity and genetic structure in the widespread macroalga Agarophyton vermiculophyllum.
- Author
-
Krueger-Hadfield SA, Byers JE, Bonthond G, Terada R, Weinberger F, and Sotka EE
- Subjects
- DNA, Mitochondrial, Genetic Variation, Microsatellite Repeats, Phylogeny, Phylogeography, Rhodophyta, Seaweed
- Abstract
Single-gene markers, such as the mitochondrial cox1, microsatellites, and single-nucleotide polymorphisms are powerful methods to describe diversity within and among taxonomic groups and characterize phylogeographic patterns. Large repositories of publicly-available, molecular data can be combined to generate and evaluate evolutionary hypotheses for many species, including algae. In the case of biological invasions, the combination of different molecular markers has enabled the description of the geographic distribution of invasive lineages. Here, we review the phylogeography of the widespread invasive red macroalga Agarophyton vermiculophyllum (synonym Gracilaria vermiculophylla). The cox1 barcoding provided the first description of the invasion history and hinted at a strong genetic bottleneck during the invasion. Yet, more recent microsatellite and SNP genotyping has not found evidence for bottlenecks and instead suggested that genetically diverse inocula arose from a highly diverse source population, multiple invasions, or some mix of these processes. The bottleneck evident from cox1 barcoding likely reflects the dominance of one mitochondrial lineage, and one haplotype in particular, in the northern source populations in Japan. Recent cox1 sequencing of A. vermiculophyllum has illuminated the complexity of phylogeographic structure in its native range of the northwest Pacific Ocean. For example, the western coast of Honshu in the Sea of Japan displays spatial patterns of haplotypic diversity with multiple lineages found together at the same geographic site. By consolidating the genetic data of this species, we clarify the phylogenetic relationships of a well-studied macroalga introduced to virtually every temperate estuary of the Northern Hemisphere., (© 2021 Phycological Society of America.)
- Published
- 2021
- Full Text
- View/download PDF
17. Local Adaptation in Marine Foundation Species at Microgeographic Scales.
- Author
-
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, and Sotka EE
- Subjects
- Acclimatization, Adaptation, Physiological genetics, Animals, Biological Evolution, Anthozoa, Ecosystem
- Abstract
AbstractNearshore foundation species in coastal and estuarine systems ( e.g. , salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities ( i.e. , microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical ( i.e. , elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
- Published
- 2021
- Full Text
- View/download PDF
18. Founder effects shape linkage disequilibrium and genomic diversity of a partially clonal invader.
- Author
-
Flanagan BA, Krueger-Hadfield SA, Murren CJ, Nice CC, Strand AE, and Sotka EE
- Subjects
- Europe, Genetics, Population, Genomics, Humans, Japan, Linkage Disequilibrium, North America, Founder Effect, Genetic Variation
- Abstract
The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalga Agarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome-length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (H
o ), Tajima's D, and nucleotide diversity (Pi) were greater among non-native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non-native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increased Ho and Pi observed in the non-native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complex A. vermiculophyllum demographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed., (© 2021 John Wiley & Sons Ltd.)- Published
- 2021
- Full Text
- View/download PDF
19. Using RAD-seq to develop sex-linked markers in a haplodiplontic alga.
- Author
-
Krueger-Hadfield SA, Flanagan BA, Godfroy O, Hill-Spanik KM, Nice CC, Murren CJ, Strand AE, and Sotka EE
- Subjects
- Genome, Germ Cells, Plant, Sequence Analysis, DNA, Rhodophyta genetics, Seaweed
- Abstract
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking., (© 2020 Phycological Society of America.)
- Published
- 2021
- Full Text
- View/download PDF
20. Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus.
- Author
-
Bortolus A, Adam P, Adams JB, Ainouche ML, Ayres D, Bertness MD, Bouma TJ, Bruno JF, Caçador I, Carlton JT, Castillo JM, Costa CSB, Davy AJ, Deegan L, Duarte B, Figueroa E, Gerwein J, Gray AJ, Grosholz ED, Hacker SD, Hughes AR, Mateos-Naranjo E, Mendelssohn IA, Morris JT, Muñoz-Rodríguez AF, Nieva FJJ, Levin LA, Li B, Liu W, Pennings SC, Pickart A, Redondo-Gómez S, Richardson DM, Salmon A, Schwindt E, Silliman BR, Sotka EE, Stace C, Sytsma M, Temmerman S, Turner RE, Valiela I, Weinstein MP, and Weis JS
- Subjects
- Phylogeny, Poaceae
- Abstract
In 2014, a DNA-based phylogenetic study confirming the paraphyly of the grass subtribe Sporobolinae proposed the creation of a large monophyletic genus Sporobolus, including (among others) species previously included in the genera Spartina, Calamovilfa, and Sporobolus. Spartina species have contributed substantially (and continue contributing) to our knowledge in multiple disciplines, including ecology, evolutionary biology, molecular biology, biogeography, experimental ecology, biological invasions, environmental management, restoration ecology, history, economics, and sociology. There is no rationale so compelling to subsume the name Spartina as a subgenus that could rival the striking, global iconic history and use of the name Spartina for over 200 yr. We do not agree with the subjective arguments underlying the proposal to change Spartina to Sporobolus. We understand the importance of both the objective phylogenetic insights and of the subjective formalized nomenclature and hope that by opening this debate we will encourage positive feedback that will strengthen taxonomic decisions with an interdisciplinary perspective. We consider that the strongly distinct, monophyletic clade Spartina should simply and efficiently be treated as the genus Spartina., (© 2019 by the Ecological Society of America.)
- Published
- 2019
- Full Text
- View/download PDF
21. Mixed effects of an introduced ecosystem engineer on the foraging behavior and habitat selection of predators.
- Author
-
Haram LE, Kinney KA, Sotka EE, and Byers JE
- Subjects
- Animals, Birds, Introduced Species, Invertebrates, Charadriiformes, Ecosystem
- Abstract
Invasive ecosystem engineers both positively and negatively affect their recipient ecosystems by generating novel habitats. Many studies have focused on alterations to ecosystem properties and to native species diversity and abundance caused by invasive engineers. However, relatively few studies have documented the extent to which behaviors of native species are affected. The red seaweed Gracilaria vermiculophylla (Rhodophyta) invaded estuaries of the southeastern United States within the last few decades and now provides abundant aboveground vegetative cover on intertidal mudflats that were historically devoid of seaweeds. We hypothesized that G. vermiculophylla would affect the foraging behavior of native shorebirds positively for birds that target seaweed-associated invertebrates or negatively for birds that target prey on or within the sediment now covered with seaweed. Visual surveys of mudflats >1 ha in size revealed that more shorebirds occurred on mudflats with G. vermiculophylla relative to mudflats without G. vermiculophylla. This increased density was consistent across 7 of 8 species, with the one exception being the semipalmated plover Charadrius semipalmatus. A regression-based analysis indicated that while algal presence predicted shorebird density, densities of some bird species depended on sediment composition and infaunal invertebrate densities. At smaller spatial scales (200 m
2 and <1 m2 ), experimental removals and additions of G. vermiculophylla and focal observations showed strong variation in behavioral response to G. vermiculophylla among bird species. Birds preferentially foraged in bare mud (e.g., C. semipalmatus), in G. vermiculophylla (e.g., Arenaria interpres), or displayed no preference for either habitat (e.g., Tringa semipalmata). Thus, while the presence of the invasive ecosystem engineer on a mudflat appeared to attract greater numbers of these predators, shorebird species differed in their behavioral responses at the smaller spatial scales that affect their foraging. Our research illuminates the need to account for species identity, individual behavior, and scale when predicting the impacts of invasive species on native communities., (© 2018 by the Ecological Society of America.)- Published
- 2018
- Full Text
- View/download PDF
22. Nutrition of marine mesograzers: integrating feeding behavior, nutrient intake and performance of an herbivorous amphipod.
- Author
-
Machado GBO, Leite FPP, and Sotka EE
- Abstract
Consumers can regulate the acquisition and use of nutrients through behavioral and physiological mechanisms. Here, we present an experimental approach that simultaneously integrates multiple nutritional traits, feeding assays, and juvenile performance to assess whether a marine herbivore (the amphipod Ampithoe valida ) regulates the intake of elements (carbon and nitrogen), macronutrients (protein and non-protein) or both when offered freeze-dried tissues of seaweeds varying in nutritional content. We assessed behavioral regulation of nutrients in three ways. First, during no-choice assays, we found that amphipods ingested similar amounts of carbon, but not nitrogen, non-protein and protein, across algal diets. Second, herbivore intake rates of carbon, protein and non-protein components across no-choice assays was similar to intake rates when offered a choice of foods. Third, variation in intake rates of carbon and non-protein components among algal diets was significantly greater than was tissue content of these components, while variation in intake rates of nitrogen was significantly lower; differences in protein intake variation was equivocal. While these analytical approaches are not uniformly consistent, carbon and nitrogen seem to emerge as the nutrient components that are more strongly regulated by A. valida . Juveniles reared on single diets shown patterns of survivorship, growth and reproduction that could not be predicted by these feeding preferences, nor nutrient content. We conclude that an integrative approach that considers the intake of multiple nutrients potentially yields insights into feeding behavior and its performance consequences., Competing Interests: The authors declare there are no competing interests.
- Published
- 2018
- Full Text
- View/download PDF
23. Nonnative Gracilaria vermiculophylla tetrasporophytes are more difficult to debranch and are less nutritious than gametophytes.
- Author
-
Lees LE, Krueger-Hadfield SA, Clark AJ, Duermit EA, Sotka EE, and Murren CJ
- Subjects
- Biomechanical Phenomena, Germ Cells, Plant physiology, Introduced Species, South Carolina, Environment, Food Chain, Gracilaria physiology, Seaweed physiology
- Abstract
Theory predicts that the maintenance of haplodiplontic life cycles requires ecological differences between the haploid gametophytes and diploid sporophytes, yet evidence of such differences remain scarce. The haplodiplontic red seaweed Gracilaria vermiculophylla has invaded the temperate estuaries of the Northern Hemisphere, where it commonly modifies detrital and trophic pathways. In native populations, abundant hard substratum enables spore settlement, and gametophyte:tetrasporophyte ratios are ~40:60. In contrast, many non-native populations persist in soft-sediment habitats without abundant hard substratum, and can be 90%-100% tetrasporophytic. To test for ecologically relevant phenotypic differences, we measured thallus morphology, protein content, organic content, "debranching resistance" (i.e., tensile force required to remove a branch from its main axis node), and material properties between male gametophytes, female gametophytes, and tetrasporophytes from a single, nonnative site in Charleston Harbor, South Carolina, USA in 2015 and 2016. Thallus length and surface area to volume ratio differed between years, but were not significantly different between ploidies. Tetrasporophytes had lower protein content than gametophytes, suggesting the latter may be more attractive to consumers. More force was required to pull a branch from the main axis of tetrasporophytes relative to gametophytes. A difference in debranching resistance may help to maintain tetrasporophyte thallus durability relative to gametophytes, providing a potential advantage in free-floating populations. These data may shed light on the invasion ecology of an important ecosystem engineer, and may advance our understanding of life cycle evolution and the maintenance of life cycle diversity., (© 2018 Phycological Society of America.)
- Published
- 2018
- Full Text
- View/download PDF
24. Combining niche shift and population genetic analyses predicts rapid phenotypic evolution during invasion.
- Author
-
Sotka EE, Baumgardner AW, Bippus PM, Destombe C, Duermit EA, Endo H, Flanagan BA, Kamiya M, Lees LE, Murren CJ, Nakaoka M, Shainker SJ, Strand AE, Terada R, Valero M, Weinberger F, and Krueger-Hadfield SA
- Abstract
The rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction, and magnitude of phenotypic evolution during invasion have been underestimated. We explored the utility of niche shift analyses in the red seaweed Gracilaria vermiculophylla , which expanded its range from the northeastern coastline of Japan to North America, Europe, and northwestern Africa within the last 100 years. A genetically informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations, and as predicted, non-native populations had greater tolerance for ecologically relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: Populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.
- Published
- 2018
- Full Text
- View/download PDF
25. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.
- Author
-
Reynolds PL, Stachowicz JJ, Hovel K, Boström C, Boyer K, Cusson M, Eklöf JS, Engel FG, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hanley TC, Ivanov M, Jorgensen P, Kruschel C, Lee KS, McGlathery K, Moksnes PO, Nakaoka M, O'Connor MI, O'Connor NE, Orth RJ, Rossi F, Ruesink J, Sotka EE, Thormar J, Tomas F, Unsworth RKF, Whalen MA, and Duffy JE
- Subjects
- Animals, Biodiversity, Ecosystem, Temperature, Predatory Behavior, Zosteraceae
- Abstract
Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions., (© 2017 by the Ecological Society of America.)
- Published
- 2018
- Full Text
- View/download PDF
26. Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity.
- Author
-
Demko AM, Amsler CD, Hay ME, Long JD, McClintock JB, Paul VJ, and Sotka EE
- Subjects
- Animals, Antarctic Regions, California, Climate, Climate Change, Ecosystem, Phaeophyceae, Sea Urchins, Seaweed, Herbivory, Plants
- Abstract
Long-standing theory predicts that the intensity of consumer-prey interactions declines with increasing latitude, yet for plant-herbivore interactions, latitudinal changes in herbivory rates and plant palatability have received variable support. The topic is of growing interest given that lower-latitude species are moving poleward at an accelerating rate due to climate change, and predicting local interactions will depend partly on whether latitudinal gradients occur in these critical biotic interactions. Here, we assayed the palatability of 50 seaweeds collected from polar (Antarctica), temperate (northeastern Pacific; California), and tropical (central Pacific; Fiji) locations to two herbivores native to the tropical and subtropical Atlantic, the generalist crab Mithraculus sculptus and sea urchin Echinometra lucunter. Red seaweeds (Rhodophyta) of polar and temperate origin were more readily consumed by urchins than were tropical reds. The decline in palatability with decreasing latitude is explained by shifts in tissue organic content along with the quantity and quality of secondary metabolites, degree of calcification or both. We detected no latitudinal shift in palatability of red seaweeds to crabs, nor any latitudinal shifts in palatability of brown seaweeds (Phaeophyta) to either crabs or urchins. Our results suggest that evolutionary pressure from tropical herbivores favored red seaweeds with lower palatability, either through the production of greater levels of chemical defenses, calcification, or both. Moreover, our results tentatively suggest that the "tropicalization" of temperate habitats is facilitated by the migration of tropical herbivores into temperate areas dominated by weakly defended and more nutritious foods, and that the removal of these competing seaweeds may facilitate the invasion of better-defended tropical seaweeds., (© 2017 by the Ecological Society of America.)
- Published
- 2017
- Full Text
- View/download PDF
27. Plant feeding promotes diversification in the Crustacea.
- Author
-
Poore AGB, Ahyong ST, Lowry JK, and Sotka EE
- Subjects
- Animals, Crustacea classification, Crustacea physiology, Herbivory physiology, Phylogeny
- Abstract
About half of the world's animal species are arthropods associated with plants, and the ability to consume plant material has been proposed to be an important trait associated with the spectacular diversification of terrestrial insects. We review the phylogenetic distribution of plant feeding in the Crustacea, the other major group of arthropods that commonly consume plants, to estimate how often plant feeding has arisen and to test whether this dietary transition is associated with higher species numbers in extant clades. We present evidence that at least 31 lineages of marine, freshwater, and terrestrial crustaceans (including 64 families and 185 genera) have independently overcome the challenges of consuming plant material. These plant-feeding clades are, on average, 21-fold more speciose than their sister taxa, indicating that a shift in diet is associated with increased net rates of diversification. In contrast to herbivorous insects, most crustaceans have very broad diets, and the increased richness of taxa that include plants in their diet likely results from access to a novel resource base rather than host-associated divergence., Competing Interests: The authors declare no conflict of interest.
- Published
- 2017
- Full Text
- View/download PDF
28. Genetic identification of source and likely vector of a widespread marine invader.
- Author
-
Krueger-Hadfield SA, Kollars NM, Strand AE, Byers JE, Shainker SJ, Terada R, Greig TW, Hammann M, Murray DC, Weinberger F, and Sotka EE
- Abstract
The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox 1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines.
- Published
- 2017
- Full Text
- View/download PDF
29. Invasion of novel habitats uncouples haplo-diplontic life cycles.
- Author
-
Krueger-Hadfield SA, Kollars NM, Byers JE, Greig TW, Hammann M, Murray DC, Murren CJ, Strand AE, Terada R, Weinberger F, and Sotka EE
- Subjects
- Biological Evolution, Pacific Ocean, Diploidy, Ecosystem, Genetics, Population, Gracilaria genetics, Haploidy
- Abstract
Baker's Law predicts uniparental reproduction will facilitate colonization success in novel habitats. While evidence supports this prediction among colonizing plants and animals, few studies have investigated shifts in reproductive mode in haplo-diplontic species in which both prolonged haploid and diploid stages separate meiosis and fertilization in time and space. Due to this separation, asexual reproduction can yield the dominance of one of the ploidy stages in colonizing populations. We tested for shifts in ploidy and reproductive mode across native and introduced populations of the red seaweed Gracilaria vermiculophylla. Native populations in the northwest Pacific Ocean were nearly always attached by holdfasts to hard substrata and, as is characteristic of the genus, haploid-diploid ratios were slightly diploid-biased. In contrast, along North American and European coastlines, introduced populations nearly always floated atop soft-sediment mudflats and were overwhelmingly dominated by diploid thalli without holdfasts. Introduced populations exhibited population genetic signals consistent with extensive vegetative fragmentation, while native populations did not. Thus, the ecological shift from attached to unattached thalli, ostensibly necessitated by the invasion of soft-sediment habitats, correlated with shifts from sexual to asexual reproduction and slight to strong diploid bias. We extend Baker's Law by predicting other colonizing haplo-diplontic species will show similar increases in asexuality that correlate with the dominance of one ploidy stage. Labile mating systems likely facilitate colonization success and subsequent range expansion, but for haplo-diplontic species, the long-term eco-evolutionary impacts will depend on which ploidy stage is lost and the degree to which asexual reproduction is canalized., (© 2016 John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
30. Development and characterization of microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla.
- Author
-
Kollars NM, Krueger-Hadfield SA, Byers JE, Greig TW, Strand AE, Weinberger F, and Sotka EE
- Abstract
Microsatellite loci are popular molecular markers due to their resolution in distinguishing individual genotypes. However, they have rarely been used to explore the population dynamics in species with biphasic life cycles in which both haploid and diploid stages develop into independent, functional organisms. We developed microsatellite loci for the haploid-diploid red seaweed Gracilaria vermiculophylla, a widespread non-native species in coastal estuaries of the Northern hemisphere. Forty-two loci were screened for amplification and polymorphism. Nine of these loci were polymorphic across four populations of the extant range with two to eleven alleles observed. Mean observed and expected heterozygosities ranged from 0.265 to 0.527 and 0.317 to 0.387, respectively. Overall, these markers will aid in the study of the invasive history of this seaweed and further studies on the population dynamics of this important haploid-diploid primary producer.
- Published
- 2015
- Full Text
- View/download PDF
31. Biodiversity mediates top-down control in eelgrass ecosystems: a global comparative-experimental approach.
- Author
-
Duffy JE, Reynolds PL, Boström C, Coyer JA, Cusson M, Donadi S, Douglass JG, Eklöf JS, Engelen AH, Eriksson BK, Fredriksen S, Gamfeldt L, Gustafsson C, Hoarau G, Hori M, Hovel K, Iken K, Lefcheck JS, Moksnes PO, Nakaoka M, O'Connor MI, Olsen JL, Richardson JP, Ruesink JL, Sotka EE, Thormar J, Whalen MA, and Stachowicz JJ
- Subjects
- Animals, Biomass, Crustacea, Food Chain, Gastropoda, Genotype, Herbivory, Microalgae, Models, Biological, Population Dynamics, Zosteraceae genetics, Biodiversity, Eutrophication, Zosteraceae physiology
- Abstract
Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors., (© 2015 John Wiley & Sons Ltd/CNRS.)
- Published
- 2015
- Full Text
- View/download PDF
32. The Adaptive Cline at LDH (Lactate Dehydrogenase) in Killifish Fundulus heteroclitus Remains Stationary After 40 Years of Warming Estuaries.
- Author
-
Bell TM, Strand AE, and Sotka EE
- Subjects
- Animals, Atlantic Ocean, Computer Simulation, Estuaries, Evolution, Molecular, Gene Frequency, Isoenzymes genetics, Polymorphism, Single Nucleotide, Temperature, United States, Acclimatization, Fundulidae genetics, L-Lactate Dehydrogenase genetics
- Abstract
Since the 1970s, water temperatures along the Atlantic seaboard of the United States have risen by an average of 0.5 °C in summer months and 2.2 °C in winter months. In response, the distribution and abundance of several nearshore species have changed dramatically, but no study has attempted to document whether estuarine populations have evolved greater thermal tolerance. Here, we re-examine the classic latitudinal cline at lactate dehydrogenase (LDH) in the killifish Fundulus heteroclitus that was originally described by Dennis Powers and associates from samples collected between 1970 and 1972. Laboratory and field evidences indicated that northern and southern isozymes at muscle LDH are locally adapted to cold and warm temperatures, respectively. Despite the potential for evolutionary response at this adaptive locus, we detected no significant shift of the LDH cline from 20 to 30 F. heteroclitus collected at each of 13 locations between the early 1970s and 2010. We conclude that the microevolution of LDH-mediated thermal tolerance has not occurred, that shifts in alleles are too incremental to be distinguished from random processes, or that F. heteroclitus uses phenotypic and genetic mechanisms besides LDH to respond to warmer waters., (© The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2014
- Full Text
- View/download PDF
33. The relative importance of predation risk and water temperature in maintaining Bergmann's rule in a marine ectotherm.
- Author
-
Manyak-Davis A, Bell TM, and Sotka EE
- Subjects
- Animals, Female, Genetic Variation, Isopoda genetics, Male, Biological Evolution, Food Chain, Isopoda growth & development, Temperature
- Abstract
Bergmann's rule-an increase in body size with latitude-correlates with latitudinal declines in ambient temperature and predation risk, but relatively few studies simultaneously explore the relative importance of these factors. Along temperate Atlantic shorelines, the isopod Idotea balthica from high latitudes are 53% longer on average than isopods from low latitudes. When reared at 6°-24°C, juveniles increased growth and development rates with temperature. Because the increase in growth rate with temperature outstripped increases in development rate, female size at maturity increased with temperature. This thermal sensitivity of growth cannot account for the latitudinal pattern in body size. Within temperature treatments, females from low latitudes reached sexual maturity at younger ages and at a smaller size than did females from higher latitudes. This shift in life-history strategy is predicted by latitudinal declines in predation pressure, which we tested using field-tethering experiments. Overall, isopods at low latitudes had a 44% greater mortality risk from daytime predators relative to isopods at higher latitudes. We conclude that a latitudinal gradient in predation risk, not temperature, is principally responsible for Bergmann's rule in I. balthica. Increases in body size during future warming of oceans may be constrained by local patterns of predation risk.
- Published
- 2013
- Full Text
- View/download PDF
34. Geographic variation in feeding preference of a generalist herbivore: the importance of seaweed chemical defenses.
- Author
-
McCarty AT and Sotka EE
- Subjects
- Animals, Atlantic Ocean, Biological Evolution, Phylogeography, Seaweed genetics, United States, Amphipoda genetics, DNA, Mitochondrial, Food Preferences, Seaweed metabolism, Secondary Metabolism
- Abstract
The ecological impacts of generalist herbivores depend on feeding preferences, which can vary across and within herbivore species. Among mesoherbivores, geographic variation in host use can occur because host plants have a more restricted geographic distribution than does the herbivore, or there is local evolution in host preference, or both. We tested the role of local evolution using the marine amphipod Ampithoe longimana by rearing multiple amphipod populations from three regions (subtropical Florida, warm-temperate North Carolina and cold-temperate New England) and assaying their feeding preferences toward ten seaweeds that occur in some but not all regions. Six of the ten seaweeds produce anti-herbivore secondary metabolites, and we detected geographic variation in feeding preference toward five (Dictyota menstrualis, Dictyota ciliolata, Fucus distichus, Chondrus crispus and Padina gymnospora, but not Caulerpa sertularioides). Amphipod populations that co-occur with a chemically-rich seaweed tended to have stronger feeding preferences for that seaweed, relative to populations that do not co-occur with the seaweed. A direct test indicated that geographic variation in feeding preference toward one seaweed (D. ciliolata) is mediated by feeding tolerance for lipophilic secondary metabolites. Among the four seaweeds that produce no known secondary metabolites (Acanthophora, Ectocarpus, Gracilaria and Hincksia/Feldmannia spp.), we detected no geographic variation in feeding preference. Thus, populations are more likely to evolve greater feeding preferences for local hosts when those hosts produce secondary metabolites. Microevolution of feeding behaviors of generalist marine consumers likely depends on the availability and identity of local hosts and the strength of their chemical defenses.
- Published
- 2013
- Full Text
- View/download PDF
35. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.
- Author
-
Forbey JS, Dearing MD, Gross EM, Orians CM, Sotka EE, and Foley WJ
- Subjects
- Animals, Biotransformation, Ecosystem, Pheromones metabolism, Pheromones pharmacokinetics, Plants chemistry, Toxins, Biological chemistry, Toxins, Biological metabolism, Toxins, Biological pharmacokinetics, Herbivory physiology, Plants metabolism
- Abstract
We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.
- Published
- 2013
- Full Text
- View/download PDF
36. Biogeographic and phylogenetic effects on feeding resistance of generalist herbivores toward plant chemical defenses.
- Author
-
Craft JD, Paul VJ, and Sotka EE
- Subjects
- Animals, Marine Toxins pharmacology, Plant Extracts chemistry, Herbivory drug effects, Herbivory physiology, Plant Extracts toxicity, Sea Urchins physiology, Seaweed chemistry
- Abstract
Many terrestrial and most marine herbivores have generalist diets, yet the role that evolutionary history plays in their foraging behaviors is poorly documented. On tropical hard-bottom reefs, generalist fishes and sea urchins readily consume seaweeds that produce lipophilic secondary metabolites. In contrast, herbivores on temperate reefs less commonly encounter seaweeds with analogous metabolites. This biogeographic pattern suggests that tropical herbivores should evolve greater feeding resistance to lipophilic defenses relative to temperate herbivores, but tests of this biogeographic pattern are rare. We offered lipophilic extracts from nine subtropical seaweeds at two concentrations to sea urchins (four subtropical and three cold-temperate populations) and quantified urchin feeding resistance. Patterns of feeding resistance toward lipophilic defenses were more similar within genera than across genera of urchins, indicating a substantial role for phylogenetic history in the feeding ecology of these generalist herbivores. The biogeographic origin of urchins also influenced feeding resistance, as subtropical species displayed greater feeding resistance than did temperate species. Similarly, a subtropical population of Arbacia punctulata had greater feeding resistance for Dictyota and Stypopodium extracts relative to temperate A. punctulata. We conclude that evolutionary history plays a more central role in the foraging ecology of generalist herbivores than is currently appreciated.
- Published
- 2013
- Full Text
- View/download PDF
37. Natural selection, larval dispersal, and the geography of phenotype in the sea.
- Author
-
Sotka EE
- Subjects
- Animals, Demography, Larva physiology, Models, Biological, Phylogeography, Selection, Genetic, Ecosystem, Fishes physiology, Invertebrates physiology
- Abstract
Populations evolve generalist, specialist, and plastic strategies in response to environmental heterogeneity. Describing such within-species variation in phenotype and how it arises is central to understanding a variety of ecological and evolutionary topics. The literature on phenotypic differences among populations is highly biased; for every one article published on a marine species, at least 10 articles are published on a terrestrial species and eight focus on terrestrial plants. Here, I outline what we know from the marine literature about geographic variation in phenotype in the sea, with a principal focus on local adaptation. The theory of environmental "grain" predicts that the most likely evolutionary response (e.g., local adaptation, phenotypic plasticity, generalism, and balanced polymorphism) depends on the spatial scale of environmental variation relative to the distance that an organism disperses. Consistent with these predictions, phenotypic plasticity is stronger among invertebrates with geographically broad dispersal versus restricted dispersal (i.e., planktonic-dispersers versus direct-developers). However, contrary to predictions, the relative frequency, and spatial scale of local adaptation is not consistently greater among direct-developers relative to planktonic disperers. This indicates that the likelihood of local adaptation depends on other organismal or environmental traits. Two of the most vexing issues that remain include (1) predicting the extent to which barriers to dispersal are a cause versus consequence of phenotypic differentiation and (2) delineating the relative importance of evolutionary forces that favor or impede local adaptation. Understanding the mechanistic basis of the geography of phenotypic differences, or phenogeography, has gained recent momentum because of a need to predict impacts of global climatic change, anthropogenic disturbances, and dispersal of organisms to non-native habitats.
- Published
- 2012
- Full Text
- View/download PDF
38. Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica.
- Author
-
Bell TM and Sotka EE
- Subjects
- Adaptation, Physiological, Animals, Fucus, Phenotype, Plants, Edible, Population Dynamics, Food Preferences, Herbivory, Isopoda
- Abstract
Populations can respond to environmental heterogeneity by genetic adaptation to local conditions. Evidence for local adaptation in herbivores with relatively broad host breadth is scarce, either because generalists rarely locally adapt or because fewer studies have tested for local adaptation. The marine isopod Idotea balthica, a small (<3 cm) generalist herbivore common to estuaries of the northwestern Atlantic, is found on multiple macroalgae and sea grasses north of 42°N, while more southerly populations utilize sea grass-dominated and macroalgal-poor habitats. Feeding preference assays revealed a latitudinal shift in preference hierarchy that mirrors this geographic variation in host availability. Northern populations have higher feeding preference for fresh and freeze-dried tissue of the brown macroalga Fucus vesiculosus and consumed more of its water-soluble and lipophilic extracts relative to southern populations. In contrast, southern populations have a relatively higher preference for the green macroalga Ulva linza and sea grass Zostera marina. The rank of hosts in feeding assays exhibited by northern adults (Fucus = Ulva > Zostera) and southern adults (Ulva > Fucus > Zostera) closely mirrored ranking of juvenile growth rates, suggesting that preference and performance are strongly correlated across these macrophytes. Several of our assays included isopods that had parents reared under uniform laboratory conditions, indicating that geographic differences are genetically mediated and unlikely to reflect phenotypic plasticity or maternal effects. Local adaptation in host use traits may be common in broadly distributed, generalist herbivores in marine and terrestrial systems, and will manifest itself as local shifts in the preference ranking of hosts.
- Published
- 2012
- Full Text
- View/download PDF
39. Global patterns in the impact of marine herbivores on benthic primary producers.
- Author
-
Poore AG, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, and Duffy JE
- Subjects
- Animals, Models, Theoretical, Oceans and Seas, Phylogeny, Plant Development, Population Density, Temperature, Food Chain, Herbivory
- Abstract
Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large-scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption., (© 2012 Blackwell Publishing Ltd/CNRS.)
- Published
- 2012
- Full Text
- View/download PDF
40. Can diversifying selection be distinguished from history in geographic clines? A population genomic study of killifish (Fundulus heteroclitus).
- Author
-
Strand AE, Williams LM, Oleksiak MF, and Sotka EE
- Subjects
- Alleles, Animals, Computer Simulation, DNA, Mitochondrial genetics, Gene Frequency, Genotype, Isoenzymes genetics, Malate Dehydrogenase genetics, Phylogeography, Fundulidae genetics, Genetic Loci, Microsatellite Repeats, Models, Genetic, Polymorphism, Single Nucleotide, Selection, Genetic
- Abstract
A common geographical pattern of genetic variation is the one-dimensional cline. Clines may be maintained by diversifying selection across a geographical gradient but can also reflect historical processes such as allopatry followed by secondary contact. To identify loci that may be undergoing diversifying selection, we examined the distribution of geographical variation patterns across the range of the killifish (Fundulus heteroclitus) in 310 loci, including microsatellites, allozymes, and single nucleotide polymorphisms. We employed two approaches to detect loci under strong diversifying selection. First, we developed an automated method to identify clinal variation on a per-locus basis and examined the distribution of clines to detect those that exhibited signifcantly steeper slopes. Second, we employed a classic [Formula: see text]-outlier method as a complementary approach. We also assessed performance of these techniques using simulations. Overall, latitudinal clines were detected in nearly half of all loci genotyped (i.e., all eight microsatellite loci, 12 of 16 allozyme loci and 44% of the 285 SNPs). With the exception of few outlier loci (notably mtDNA and malate dehydrogenase), the positions and slopes of Fundulus clines were statistically indistinguishable. The high frequency of latitudinal clines across the genome indicates that secondary contact plays a central role in the historical demography of this species. Our simulation results indicate that accurately detecting diversifying selection using genome scans is extremely difficult in species with a strong signal of secondary contact; neutral evolution under this history produces clines as steep as those expected under selection. Based on these results, we propose that demographic history can explain all clinal patterns observed in F. heteroclitus without invoking natural selection to either establish or maintain the pattern we observe today.
- Published
- 2012
- Full Text
- View/download PDF
41. Local consumers induce resistance differentially between Spartina populations in the field.
- Author
-
Long JD, Mitchell JL, and Sotka EE
- Subjects
- Animals, Maine, South Carolina, Ecosystem, Feeding Behavior physiology, Hemiptera physiology, Poaceae physiology, Snails physiology
- Abstract
Intraspecific variation in the strength of inducible plant defenses plays a central role in the interactions between plants and herbivores. Studies of this variation are typically conducted in the greenhouse or laboratory rather than the field. We simultaneously manipulated densities of local consumers in the field within Maine and South Carolina populations of the smooth cordgrass Spartina alterniflora. South Carolina, but not Maine, plants induced resistance when grazed by local consumers. South Carolina populations of Littoraria snails and planthoppers colonized control more than previously grazed South Carolina plants, and Littoraria snails consumed more control than previously grazed plants. The inducible feeding deterrents in South Carolina plants appear to be water soluble, but not phenolic based. In contrast, grazed and control plants from Maine populations did not differ in attractiveness or palatability to Maine consumers. Thus, inducible plant responses by South Carolina plants had a strong effect on the South Carolina consumer community, but no analogous effect occurred in Maine. Field experiments are a powerful approach to detecting the strength of inducible plant resistance and its impacts on local consumers, which in this case were shown to vary with location.
- Published
- 2011
- Full Text
- View/download PDF
42. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals.
- Author
-
Whalen KE, Sotka EE, Goldstone JV, and Hahn ME
- Subjects
- ATP Binding Cassette Transporter, Subfamily B, Member 1 metabolism, ATP-Binding Cassette Transporters genetics, Animals, Biological Transport, Food Chain, Gastropoda drug effects, Gastropoda genetics, Multidrug Resistance-Associated Proteins genetics, Multidrug Resistance-Associated Proteins metabolism, Pheromones toxicity, Tritonia Sea Slug drug effects, Tritonia Sea Slug genetics, Xenobiotics toxicity, ATP-Binding Cassette Transporters metabolism, Gastropoda metabolism, Pheromones metabolism, Tritonia Sea Slug metabolism, Xenobiotics metabolism
- Abstract
Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated efflux activity and expression in the generalist gastropod Cyphoma gibbosum, and the specialist nudibranch Tritonia hamnerorum, obligate predators of chemically defended gorgonian corals. Immunochemical analysis revealed that proteins with homology to permeability glycoprotein (P-gp) were highly expressed in T. hamnerorum whole animal homogenates and localized to the apical tips of the gut epithelium, a location consistent with a role in protection against ingested prey toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P-gp and multidrug resistance-associated protein (MRP) families of ABC transporters in T. hamnerorum. In addition, we identified eight partial cDNA sequences encoding two ABCB and two ABCC proteins from each molluscan species. Digestive gland transcripts of C. gibbosum MRP-1, which have homology to vertebrate glutathione-conjugate transporters, were constitutively expressed regardless of gorgonian diet. This constitutive expression may reflect the ubiquitous presence of high affinity substrates for C. gibbosum glutathione transferases in gorgonian tissues likely necessitating export by MRPs. Our results suggest that differences in multixenobiotic transporter expression patterns and activity in molluscan predators may stem from the divergent foraging strategies of each consumer., (Copyright (c) 2010 Elsevier Inc. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
43. The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems.
- Author
-
Sotka EE, Forbey J, Horn M, Poore AG, Raubenheimer D, and Whalen KE
- Abstract
Within our lakes, streams, estuaries, and oceans, there is an astounding chemodiversity of secondary metabolites produced by microbes, algae, and invertebrates. Nearly 30 years of study have yielded hundreds of examples in which secondary metabolites alter the foraging behavior or fitness of aquatic consumers, or both. However, our understanding of the mechanisms that mediate the fate and consequences of these metabolites in aquatic consumers remains in its infancy. Interactions between metabolites and consumers at the molecular and biochemical level are the purview of modern pharmacology, which is rooted in the long history of human-drug interactions and can be adopted for ecological studies. Here, we argue that a pharmacological approach to consumer-prey interactions will be as productive within aquatic systems as it has been for understanding terrestrial systems. We review the diversity of secondary metabolites in aquatic organisms, their known effects on the feeding behaviors and performance of aquatic consumers, and the few studies that have attempted to describe their biochemical manipulation within consumer tissues, i.e., their absorption, distribution, metabolism (including detoxification), and excretion. We then highlight vexing issues in the ecology and evolution of aquatic consumer-prey interactions that would benefit from a pharmacological approach, including specialist-versus-generalist feeding strategies, dietary mixing, nutrient-toxin interactions, and taste. Finally, we argue that a pharmacological approach could help to predict how consumer-prey interactions are altered by global changes in pH, water temperature and ultraviolet radiation, or by pollution. Arguably, the state of knowledge of aquatic consumer-prey interactions is equivalent to that faced by ecologists studying terrestrial herbivores in the 1970s; the literature documents profound variation among consumers in their feeding tolerances for secondary metabolites without a thorough understanding of the mechanisms that underlie that variation. The subsequent advancement in our understanding of terrestrial herbivores in the intervening decades provides confidence that applying a pharmacological approach to aquatic consumers will prove equally productive.
- Published
- 2009
- Full Text
- View/download PDF
44. Benthic herbivores are not deterred by brevetoxins produced by the red tide dinoflagellate Karenia brevis.
- Author
-
Sotka EE, McCarty A, Monroe EA, Oakman N, and Van Dolah FM
- Subjects
- Amphipoda drug effects, Animals, Arbacia drug effects, Dinoflagellida metabolism, Environmental Monitoring, Feeding Behavior, Marine Toxins isolation & purification, Marine Toxins toxicity, Oxocins isolation & purification, Oxocins toxicity, Dinoflagellida chemistry, Marine Toxins pharmacology, Oxocins pharmacology
- Abstract
Gulf of Mexico blooms of the dinoflagellate Karenia brevis produce neurotoxic cyclic polyethers called brevetoxins. During and after a red tide bloom in southwestern Florida, K. brevis cells lyse and release brevetoxins, which then sink to the benthos and coat the surfaces of seagrasses and their epiphytes. We tested the possibility that these brevetoxin-laden foods alter the feeding behavior and fitness of a common benthic herbivore within Floridean seagrass beds, the amphipod Ampithoe longimana. We demonstrated that coating foods with K. brevis extracts that contain brevetoxins at post-bloom concentrations (1 microg g(-1) drymass) does not alter the feeding rates of Florida nor North Carolina populations of A. longimana, although a slight deterrent effect was found at eight and ten-fold greater concentrations. During a series of feeding choice assays, A. longimana tended not to be deterred by foods coated with K. brevis extracts nor with the purified brevetoxins PbTx-2 and PbTx-3. Florida juveniles isolated with either extract-coated or control foods for 10 days did not differ in survivorship nor growth. A similar lack of feeding response to brevetoxin-laden foods also was exhibited by two other generalist herbivores of the southeastern United States, the amphipod A. valida and the urchin Arbacia punctulata. Given that benthic mesograzers constitute a significant portion of the diet for the juvenile stage of many nearshore fishes, we hypothesize that the ability of some mesograzers to feed on and retain brevetoxins in their bodies indicates that mesograzers may represent an important route of vertical transmission of brevetoxins through higher trophic levels within Gulf of Mexico estuaries.
- Published
- 2009
- Full Text
- View/download PDF
45. Seawater temperature alters feeding discrimination by cold-temperate but not subtropical individuals of an ectothermic herbivore.
- Author
-
Sotka EE and Giddens H
- Subjects
- Animals, Seasons, Seaweed, Time Factors, Amphipoda physiology, Cold Temperature, Feeding Behavior physiology, Seawater
- Abstract
Seawater temperature varies across multiple spatial and temporal scales, yet the roles that such variation play in altering biotic interactions are poorly known. We assessed temperature-mediated feeding behavior exhibited by the herbivorous amphipod Ampithoe longimana collected from cold-temperate and subtropical estuaries (27 degrees N and 41 degrees N, respectively). Individuals were offered a pairwise feeding choice between lyophilized seaweeds that provide higher fitness (Ulva intestinalis) or lower fitness (Halimeda tuna, H. opuntia, Amphiroa spp., or Stypopodium zonale). Overall, herbivores preferentially consumed the higher quality U. intestinalis more than any lower quality food. However, the strength of this feeding choice was not consistent. Northern herbivores consumed proportionally more poorer quality tissue at 25 degrees C than at 20 degrees C in two assays (H. opuntia and Amphiroa sp.), consumed less poorer quality tissue at 25 degrees C than at 20 degrees C in one assay (S. zonale), and showed no difference in another assay (H. tuna). Moreover, when offered tissue coated with lipophilic extracts of H. opuntia, northern herbivores consumed more extract-coated tissue at 25 degrees C than at 20 degrees C. In contrast to northern herbivores, the southern herbivores did not alter their feeding choices with temperature. This study represents the first demonstration that short-term (i.e., days-long) variation in ambient temperature alters feeding choices in a marine herbivore.
- Published
- 2009
- Full Text
- View/download PDF
46. The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain.
- Author
-
Ayme-Southgate AJ, Southgate RJ, Philipp RA, Sotka EE, and Kramp C
- Subjects
- Amino Acid Motifs, Animals, Conserved Sequence, DNA, Complementary genetics, Exons genetics, Insecta classification, Insecta genetics, Molecular Sequence Data, Muscle Proteins genetics, Phylogeny, Sequence Alignment, Sequence Homology, Amino Acid, Evolution, Molecular, Insecta chemistry, Insecta metabolism, Muscle Proteins chemistry, Muscle Proteins metabolism, Myofibrils chemistry, Myofibrils metabolism
- Abstract
All striated muscles respond to stretch by a delayed increase in tension. This physiological response, known as stretch activation, is, however, predominantly found in vertebrate cardiac muscle and insect asynchronous flight muscles. Stretch activation relies on an elastic third filament system composed of giant proteins known as titin in vertebrates or kettin and projectin in insects. The projectin insect protein functions jointly as a "scaffold and ruler" system during myofibril assembly and as an elastic protein during stretch activation. An evolutionary analysis of the projectin molecule could potentially provide insight into how distinct protein regions may have evolved in response to different evolutionary constraints. We mined candidate genes in representative insect species from Hemiptera to Diptera, from published and novel genome sequence data, and carried out a detailed molecular and phylogenetic analysis. The general domain organization of projectin is highly conserved, as are the protein sequences of its two repeated regions-the immunoglobulin type C and fibronectin type III domains. The conservation in structure and sequence is consistent with the proposed function of projectin as a scaffold and ruler. In contrast, the amino acid sequences of the elastic PEVK domains are noticeably divergent, although their length and overall unusual amino acid makeup are conserved. These patterns suggest that the PEVK region working as an unstructured domain can still maintain its dynamic, and even its three-dimensional, properties, without the need for strict amino acid conservation. Phylogenetic analysis of the projectin proteins also supports a reclassification of the Hymenoptera in relation to Diptera and Coleoptera.
- Published
- 2008
- Full Text
- View/download PDF
47. Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family Ampithoidae.
- Author
-
Poore AG, Hill NA, and Sotka EE
- Subjects
- Animals, Demography, Amphipoda classification, Amphipoda physiology, Geography, Phylogeny, Plants parasitology
- Abstract
Predicting the host range for herbivores has been a major aim of research into plant-herbivore interactions and an important model system for understanding the evolution of feeding specialization. Among many terrestrial insects, host range is strongly affected by herbivore phylogeny and long historical associations between particular herbivore and plant taxa. For small herbivores in marine environments, it is known that the evolution of host use is sculpted by several ecological factors (e.g., food quality, value as a refuge from predators, and abiotic forces), but the potential for phylogenetic constraints on host use remains largely unexplored. Here, we analyze reports of host use of herbivorous amphipods from the family Ampithoidae (102 amphipod species from 12 genera) to test the hypotheses that host breadth and composition vary among herbivore lineages, and to quantify the extent to which nonpolar secondary metabolites mediate these patterns. The family as a whole, and most individual species, are found on a wide variety of macroalgae and seagrasses. Despite this polyphagous host use, amphipod genera consistently differed in host range and composition. As an example, the genus Peramphithoe rarely use available macrophytes in the order Dictyotales (e.g., Dictyota) and as a consequence, display a more restricted host range than do other genera (e.g., Ampithoe, Cymadusa, or Exampithoe). The strong phylogenetic effect on host use was independent of the uneven distribution of host taxa among geographic regions. Algae that produced nonpolar secondary metabolites were colonized by higher numbers of amphipod species relative to chemically poor genera, consistent with the notion that secondary metabolites do not provide algae an escape from amphipod herbivory. In contrast to patterns described for some groups of phytophagous insects, marine amphipods that use chemically rich algae tended to have broader, not narrower, host ranges. This result suggests that an evolutionary advantage to metabolite tolerance in marine amphipods may be that it increases the availability of appropriate algal hosts (i.e., enlarges the resource base).
- Published
- 2008
- Full Text
- View/download PDF
48. Genetic isolation by distance among populations of the netted dog whelk Nassarius reticulatus (L.) along the European Atlantic coastline.
- Author
-
Couceiro L, Barreiro R, Ruiz JM, and Sotka EE
- Subjects
- Animals, Atlantic Ocean, Europe, Gastropoda growth & development, Gene Amplification, Genetics, Population, Geography, Larva physiology, Polymorphism, Genetic, Gastropoda genetics
- Abstract
Estimates of the average distances by which marine larvae disperse are generally poorly described, despite the central role that larval dispersal plays in the demographic connectivity of populations across geographic space. Here, we describe the population genetic structure and average dispersal distance of the netted dog whelk Nassarius reticulatus (L.) (Mollusca, Gastropoda, Prosobranchia), a widespread member of European intertidal communities, using DNA sequence variation in a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI). An analysis of 156 individuals from 6 locations spread across approximately 1700 km of the European Atlantic coastline revealed weak and nonsignificant population structure (overall Phi(ST) = 0.00013). However, pairwise Phi(ST) values revealed a slight but significant increase in genetic isolation with geographic distance (IBD), suggesting that populations are not panmictic across the sampled geographic range. If we assume that the isolation by distance is maintained by a stable, stepping stone model of gene flow, then the slope of the IBD is consistent with an average larval dispersal distance of approximately 70 km per generation. The spatial scale of larval dispersal in N. reticulatus is consistent with the life cycle of the species (planktotrophic veliger lasting 30-60 days before competent to settle). A mismatch analysis of the COI sequences revealed a signature of an ancient demographic expansion that began 61 500-160,000 years ago, well before the most recent Pleistocene glaciation event. The greatest levels of genetic diversity occur within the middle latitudes of the whelk's geographic range, consistent with the notion that historic populations of N. reticulatus might have expanded northward and southward from the centrally located Bay of Biscay.
- Published
- 2007
- Full Text
- View/download PDF
49. Mitochondrial DNA and population size.
- Author
-
Wares JP, Barber PH, Ross-Ibarra J, Sotka EE, and Toonen RJ
- Subjects
- Animals, Meta-Analysis as Topic, Population Density, Biological Evolution, DNA, Mitochondrial genetics, Genetic Variation, Invertebrates genetics, Polymorphism, Genetic, Vertebrates genetics
- Published
- 2006
50. The use of genetic clines to estimate dispersal distances of marine larvae.
- Author
-
Sotka EE and Palumbi SR
- Subjects
- Animal Migration, Animals, Genetic Speciation, Geography, Linkage Disequilibrium, Seawater, Evolution, Molecular, Genetic Linkage, Larva genetics, Larva physiology, Selection, Genetic
- Abstract
Many unresolved issues in the ecology and evolution of marine populations center on how far planktonic larvae disperse away from their parents. Genetic tools provide a promising way to define the spatial spread of larvae, yet their accurate interpretation depends on the extent to which genetic loci are under selection. Genetic clines, geographic zones in which genetically differentiated populations interbreed, provide opportunities to explicitly and simultaneously quantify the relative roles of selection and dispersal. Here, we review the theory and analysis of genetic clines and apply these techniques to published studies of multilocus clines in the sea. The geographic width of a stable genetic cline is determined by a balance between the homogenizing effects of dispersal and the diversifying effects of selection. For marine researchers, the power of genetic clines is that, if selection and clinal width are quantified, then the average geographic distances that larvae move can be inferred. Measuring selection or dispersal through laboratory or field-based experimentation is possible, though logistically difficult, for pelagically dispersed organisms. Instead, dispersal may be more robustly quantified from the degree of linkage disequilibrium between two or more loci, because linkage disequilibrium integrates selection across multiple life stages and generations. It is also relatively insensitive to whether exogenous or endogenous selection operates. Even without quantifying linkage disequilibrium, the theory of genetic clines indicates that the average dispersal distance of larvae is a fraction (i.e., generally <35%) of the clinal width. Because cline theory is based on several underlying assumptions, including near-equilibrium between selection and migration, the dispersal distances inferred from empirical data should be of the correct order but may not be precise. Even so, such estimates of larval dispersal are valuable, as they can be utilized to design appropriate scales for future investigations and provide some guidance to conservation efforts.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.