Back to Search Start Over

Nonnative Gracilaria vermiculophylla tetrasporophytes are more difficult to debranch and are less nutritious than gametophytes.

Authors :
Lees LE
Krueger-Hadfield SA
Clark AJ
Duermit EA
Sotka EE
Murren CJ
Source :
Journal of phycology [J Phycol] 2018 Aug; Vol. 54 (4), pp. 471-482. Date of Electronic Publication: 2018 May 23.
Publication Year :
2018

Abstract

Theory predicts that the maintenance of haplodiplontic life cycles requires ecological differences between the haploid gametophytes and diploid sporophytes, yet evidence of such differences remain scarce. The haplodiplontic red seaweed Gracilaria vermiculophylla has invaded the temperate estuaries of the Northern Hemisphere, where it commonly modifies detrital and trophic pathways. In native populations, abundant hard substratum enables spore settlement, and gametophyte:tetrasporophyte ratios are ~40:60. In contrast, many non-native populations persist in soft-sediment habitats without abundant hard substratum, and can be 90%-100% tetrasporophytic. To test for ecologically relevant phenotypic differences, we measured thallus morphology, protein content, organic content, "debranching resistance" (i.e., tensile force required to remove a branch from its main axis node), and material properties between male gametophytes, female gametophytes, and tetrasporophytes from a single, nonnative site in Charleston Harbor, South Carolina, USA in 2015 and 2016. Thallus length and surface area to volume ratio differed between years, but were not significantly different between ploidies. Tetrasporophytes had lower protein content than gametophytes, suggesting the latter may be more attractive to consumers. More force was required to pull a branch from the main axis of tetrasporophytes relative to gametophytes. A difference in debranching resistance may help to maintain tetrasporophyte thallus durability relative to gametophytes, providing a potential advantage in free-floating populations. These data may shed light on the invasion ecology of an important ecosystem engineer, and may advance our understanding of life cycle evolution and the maintenance of life cycle diversity.<br /> (© 2018 Phycological Society of America.)

Details

Language :
English
ISSN :
1529-8817
Volume :
54
Issue :
4
Database :
MEDLINE
Journal :
Journal of phycology
Publication Type :
Academic Journal
Accession number :
29676788
Full Text :
https://doi.org/10.1111/jpy.12746