In present work, Mo films were deposited on corning glass substrates using DC-Magnetron sputtering. Influence of DC sputtering power on electrical, structural, morphological, optical and topological properties has been investigated by using Hall effect, Х-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy, non-contact-atomic force microscopy (NC-AFM) etc. It is observed that electrical resistivity and adhesion of Mo thin film were strongly affected by DC power. The synthesized Mo films were of few micrometer thicknesses (~ 0.9-1.6 m) with deposition rate in the range of 32-57 nm/min. Cross-hatch cut and Scotch tape adhesion test showed that all Mo films have good adhesion to the substrate. XRD analysis showed that as-deposited Mo films have preferred orientation in (110) direction and with enhancement in its crystallinity and average grain size with an increase in the DC sputtering power. Furthermore, XRD analysis showed that the Mo films deposited at DC sputtering power 300 W exhibit tensile strain, while deposited at DC sputtering power 350 W – exhibit compressive strain. FE-SEM analysis showed that all Mo films are dense, homogeneous and free of flaws and cracks. In the visible range of the spectrum, an increase in an average reflection of Mo films with DC sputtering power was observed by UV-Visible spectroscopy analysis. NC-AFM characterization revealed that the surface roughness of the films increases with an increase in the DC sputtering power. Hall effect measurements showed that the electrical resistivity of Mo films decreases while charge carrier mobility show increasing trend with increase in DC sputtering power. The obtained results suggest that as-synthesized Mo thin films with DC power 300 W have potential application as a back contact material for chalcopyrite compounds based on solar cells due to good adhesion and low electrical resistivity. В даній роботі, плівки Mo осаджувалися на підкладках із скла з використанням магнетронного розпилення при постійному струмі. Досліджено вплив потужності розпилення на електричні, структурні, морфологічні, оптичні та топологічні властивості за допомогою ефекту Холла, рентгенівської дифракції, автоелектронної скануючої мікроскопії, спектроскопії в УФ та видимої областях, неконтактної атомно-силової мікроскопії, тощо. Виявлено, що потужність постійного струму суттєво впливає на електричний опір і адгезію тонкої плівки Мо. Синтезовані плівки Mo мали товщину декількох мікрометрів (~ 0.9-1.6 мкм) зі швидкістю осадження в діапазоні 32-57 нм/хв. Випробування показали, що всі плівки Mo мають гарну адгезію до підкладки. Рентгено-дифракційний аналіз показав, що свіжосконденсовані плівки Mo мають переважну орієнтацію (110) і поліпшення її кристалічності та середнього розміру зерна зі збільшенням потужності розпилення при постійному струмі. Крім того, рентгенодифракційний аналіз показав, що плівки Mo, нанесені при потужності розпилення 300 Вт, демонструють деформацію розтягування, в той час як нанесені при потужності розпилення 350 Вт демонструють деформацію стиску. Результати автоелектронної скануючої мікроскопії показали, що всі плівки Mo щільні, однорідні і вільні від дефектів і тріщин. При спектроскопічному аналізі спостерігалося збільшення середнього коефіцієнту відбиття плівок Mo з потужністю розпилення спостерігалося у видимому діапазоні спектра. Неконтактна атомно-силова мікроскопія показала, що шорсткість поверхні плівок збільшується зі збільшенням потужності розпилення при постійному струмі. Вимірювання ефекту Холла показало, що електричний опір плівок Mo зменшується, а рухливість носіїв заряду збільшується з ростом потужності розпилення при постійному струмі. Отримані результати свідчать про те, що синтезовані тонкі плівки Мо з потужністю постійного струму 300 Вт мають перспективу застосування як матеріалу зворотного контакту для сполук халькопіритів на основі сонячних елементів завдяки хорошій адгезії та низькому електричному опору.