1. More efficient periodic traversal in anonymous undirected graphs
- Author
-
Kunihiko Sadakane, Ioannis Lignos, Leszek Gsieniec, Ralf Klasing, Jesper Jansson, Stefan Dobrev, Russell Martin, David Ilcinkas, Wing-Kin Sung, Jurek Czyzowicz, Département d'Informatique et d'Ingénierie (DII), Université du Québec en Outaouais (UQO), Institute of Mathematics, Slovak Academy of Science [Bratislava] (SAS), Department of Computer Science [Liverpool], University of Liverpool, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE), Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Ochanomizu University, Department of Computer Science, Durham University, Principles of Informatics Research Division, National Institute of Informatics (NII), National University of Singapore (NUS), See paper for details, ANR-07-BLAN-0322,ALADDIN,Algorithm Design and Analysis for Implicitly and Incompletely Defined Interaction Networks(2007), INRIA Futurs, See paper for details., ANR-05-MMSA-0006,ALPAGE,ALgorithmique des Plates-formes A Grande Echelle(2005), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
- Subjects
FOS: Computer and information sciences ,General Computer Science ,Discrete Mathematics (cs.DM) ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Comparability graph ,Constant-memory agent ,0102 computer and information sciences ,02 engineering and technology ,Strength of a graph ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Upper and lower bounds ,law.invention ,Theoretical Computer Science ,Combinatorics ,Graph exploration ,law ,Graph power ,Line graph ,Graph traversal ,0202 electrical engineering, electronic engineering, information engineering ,Algorithms and data structures ,Oblivious agent ,Undirected graph ,Mathematics ,Discrete mathematics ,Mobile entity ,Voltage graph ,Three-layer partition ,Butterfly graph ,Periodic graph traversal ,Tree traversal ,010201 computation theory & mathematics ,020201 artificial intelligence & image processing ,Periodic graph (geometry) ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Null graph ,Span tree ,Period length ,Computer Science - Discrete Mathematics ,Computer Science(all) - Abstract
International audience; We consider the problem of periodic graph exploration in which a mobile entity with constant memory, an agent, has to visit all n nodes of an input simple, connected, undirected graph in a periodic manner. Graphs are assumed to be anonymous, that is, nodes are unlabeled. While visiting a node, the agent may distinguish between the edges incident to it; for each node v, the endpoints of the edges incident to v are uniquely identified by different integer labels called port numbers. We are interested in algorithms for assigning the port numbers together with traversal algorithms for agents using these port numbers to obtain short traversal periods. Periodic graph exploration is unsolvable if the port numbers are set arbitrarily; see Budach (1978) [1]. However, surprisingly small periods can be achieved by carefully assigning the port numbers. Dobrev et al. (2005) [4] described an algorithm for assigning port numbers and an oblivious agent (i.e., an agent with no memory) using it, such that the agent explores any graph with n nodes within the period 10n. When the agent has access to a constant number of memory bits, the optimal length of the period was proved in Gąsieniec et al. (2008) [7] to be no more than 3.75n−2 (using a different assignment of the port numbers and a different traversal algorithm). In this paper, we improve both these bounds. More precisely, we show how to achieve a period length of at most for oblivious agents and a period length of at most 3.5n−2 for agents with constant memory. To obtain our results, we introduce a new, fast graph decomposition technique called a three-layer partition that may also be useful for solving other graph problems in the future. Finally, we present the first non-trivial lower bound, 2.8n−2, on the period length for the oblivious case.
- Published
- 2012