Back to Search Start Over

Optimal Exploration of Terrains with Obstacles

Authors :
Andrzej Pelc
Jurek Czyzowicz
David Ilcinkas
Arnaud Labourel
Département d'Informatique et d'Ingénierie (DII)
Université du Québec en Outaouais (UQO)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE)
Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
See paper for details
ANR-07-BLAN-0322,ALADDIN,Algorithm Design and Analysis for Implicitly and Incompletely Defined Interaction Networks(2007)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
Source :
Lecture Notes in Computer Science ISBN: 9783642137303, Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2010, SWAT 2010, Jun 2010, Bergen, Norway. pp.1-12, ⟨10.1007/978-3-642-13731-0_1⟩
Publication Year :
2010
Publisher :
Springer Berlin Heidelberg, 2010.

Abstract

International audience; A mobile robot represented by a point moving in the plane has to explore an unknown flat terrain with impassable obstacles. Both the terrain and the obstacles are modeled as arbitrary polygons. We consider two scenarios: the unlimited vision, when the robot situated at a point p of the terrain explores (sees) all points q of the terrain for which the segment pq belongs to the terrain, and the limited vision, when we require additionally that the distance between p and q be at most 1. All points of the terrain (except obstacles) have to be explored and the performance of an exploration algorithm, called its complexity, is measured by the length of the trajectory of the robot. For unlimited vision we show an exploration algorithm with complexity $O(P+D\sqrt{k})$, where P is the total perimeter of the terrain (including perimeters of obstacles), D is the diameter of the convex hull of the terrain, and k is the number of obstacles. We do not assume knowledge of these parameters. We also prove a matching lower bound showing that the above complexity is optimal, even if the terrain is known to the robot. For limited vision we show exploration algorithms with complexity $O(P+A+\sqrt{Ak})$, where A is the area of the terrain (excluding obstacles). Our algorithms work either for arbitrary terrains, if one of the parameters A or k is known, or for c-fat terrains, where c is any constant (unknown to the robot) and no additional knowledge is assumed. (A terrain ${\mathcal T}$ with obstacles is c-fat if R/r ≤ c, where R is the radius of the smallest disc containing ${\mathcal T}$ and r is the radius of the largest disc contained in ${\mathcal T}$.) We also prove a matching lower bound $\Omega(P+A+\sqrt{Ak})$ on the complexity of exploration for limited vision, even if the terrain is known to the robot.

Details

ISBN :
978-3-642-13730-3
ISBNs :
9783642137303
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783642137303, Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2010, SWAT 2010, Jun 2010, Bergen, Norway. pp.1-12, ⟨10.1007/978-3-642-13731-0_1⟩
Accession number :
edsair.doi.dedup.....94f1949099ab95b62d0dc220cab5366d