Junyan Lin, Anaïs Rancon, Delphine Chaduli, Sana Raouche, Marie-Noëlle Rosso, Bernard Henrissat, Anna Lipzen, Isabelle Herpoël-Gimbert, Didier Chevret, Matthieu Hainaut, Hayat Hage, Elodie Drula, Igor V. Grigoriev, David Navarro, Shingo Miyauchi, Francisco J. Ruiz-Dueñas, Mei Wang, Laurence Lesage-Meessen, Sacha Grisel, Robert Riley, Jasmyn Pangilinan, Anne Favel, Simeng Zhou, Interactions Arbres-Microorganismes (IAM), Université de Lorraine (UL)-Institut National de la Recherche Agronomique (INRA), Biodiversité et Biotechnologie Fongiques (BBF), École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Architecture et fonction des macromolécules biologiques (AFMB), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), King Abdulaziz University, Centro de Investigaciones Biológicas (CIB), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, US Department of Energy Joint Genome Institute, U.S Department of Energy, U.S. Department of Energy (DOE)-U.S. Department of Energy (DOE), Department of Plant and Microbial Biology, University of California, Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), ANR-12-BIME-0009 ANR-14-CE06-0020-01, ANR-10-EQPX-29-01Office of Science of the U.S. Department of Energy, DE-AC02-05CH11231, Spanish Ministry of Economy, Industry and Competitiveness BIO2017-86559-R, Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), U.S. Department of Energy [Washington] (DOE)-U.S. Department of Energy [Washington] (DOE), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC), Agence Nationale de la Recherche (France), Agencia Estatal de Investigación (España), Department of Energy (US), Ministerio de Economía, Industria y Competitividad (España), University of California (UC), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
[Background] Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide., [Results] We performed integrative multi-omics analyses by combining data from the fungal genome, transcriptomes, and secretomes. We found that the fungus possessed an unexpectedly large set of genes coding for Class II peroxidases involved in lignin degradation (19 genes) and GMC oxidoreductases/dehydrogenases involved in generating the hydrogen peroxide required for lignin peroxidase activity and promoting redox cycling of the fungal enzymes involved in oxidative cleavage of lignocellulose polymers (36 genes). The examination of interrelated multi-omics patterns revealed that eleven Class II Peroxidases were secreted by the fungus during fermentation and eight of them where tightly co-regulated with redox cycling enzymatic partners., This work was supported by The French National Agency for Research (ANR-12-BIME-0009, ANR-14-CE06-0020-01). The work by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work by CSIC was supported by the Spanish Ministry of Economy, Industry and Competitiveness (BIO2017-86559-R). The HPC resources of Aix-Marseille Université was supported by The French National Agency for Research (ANR-10-EQPX-29-01).