7 results on '"Rosette Goïame"'
Search Results
2. Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination.
- Author
-
Chooyoung Baek, Lucy Freem, Rosette Goïame, Helen Sang, Xavier Morin, and Samuel Tozer
- Subjects
Biology (General) ,QH301-705.5 - Abstract
The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.
- Published
- 2018
- Full Text
- View/download PDF
3. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging
- Author
-
Arnaud Gautier, Xavier Morin, Lydia Danglot, Alison G. Tebo, Julie Nguyen, Karim Ounoughi, Rosette Goïame, Thomas Le Saux, Chenge Li, Isabelle Aujard, Hela Benaissa, Nicolas Pietrancosta, Evelyne Fischer, Ludovic Jullien, Processus d'Activation Sélective par Transfert d'Energie Uni-électronique ou Radiatif (UMR 8640) (PASTEUR), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des biomolécules (LBM UMR 7203), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Département de Chimie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de psychiatrie et neurosciences de Paris (IPNP - U1266 Inserm), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Janelia Research Campus [Ashburn] (HHMI Janelia), Howard Hughes Medical Institute (HHMI), Shangaï Jiao Tong University [Shangaï], Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Neurosciences Paris Seine (NPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), We thank Leducq establishment for funding the Leica SP8 Confocal/STED 3DX system, Sésame Région Ile-de-France for funding the Zeiss 880 Confocal/Airyscan system, and FLAG-ERA for grant SENSEÏ by ANR-19-HBPR-0003. This work has been supported by the European Research Council (ERC-2016-CoG-724705 FLUOSWITCH), the Agence Nationale de la Recherche (France BioImaging—ANR-10-INBS-04, Morphoscope2 - ANR-11-EQPX-0029, ANR-19-CE13-0026 ADOBE) and a prematuration grant from PSL University and QLife., ANR-19-HBPR-0003,SENSEI,Segmentation of Neurons using Standard and Super-Resolution Microscopy(2019), ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), ANR-11-EQPX-0029,MORPHOSCOPE 2,Imagerie et reconstruction multiéchelles de la morphogenèse. (Plateforme d'innovation technologique et méthodologique pour l'imagerie in vivo et la reconstruction des dynamiques multiéchelles de la morphogenèse)(2011), ANR-19-CE13-0026,ADOBE,Dynamique de l'adhésion au niveau de l'enveloppe bactérienne(2019), European Project: ERC-2016-CoG-724705 ,FLUOSWITCH, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de biologie de l'ENS Paris (IBENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département de Chimie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Neuroscience Paris Seine (NPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Systèmes glutamatergiques normaux et pathologiques = Normal and Pathologic Glutamatergic Neurons (NPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Analyse, Interactions Moléculaires et Cellulaires (LBM-E2), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Gestionnaire, Hal Sorbonne Université, Segmentation of Neurons using Standard and Super-Resolution Microscopy - - SENSEI2019 - ANR-19-HBPR-0003 - FLAG-ERA JTC 2019 - VALID, Développment d'une infrastructure française distribuée coordonnée - - France-BioImaging2010 - ANR-10-INBS-0004 - INBS - VALID, Equipements d'excellence - Imagerie et reconstruction multiéchelles de la morphogenèse. (Plateforme d'innovation technologique et méthodologique pour l'imagerie in vivo et la reconstruction des dynamiques multiéchelles de la morphogenèse) - - MORPHOSCOPE 22011 - ANR-11-EQPX-0029 - EQPX - VALID, Dynamique de l'adhésion au niveau de l'enveloppe bactérienne - - ADOBE2019 - ANR-19-CE13-0026 - AAPG2019 - VALID, and Pushing the frontiers of biological imaging with genetically encoded fluorescence switches - FLUOSWITCH - ERC-2016-CoG-724705 - INCOMING
- Subjects
Diagnostic Imaging ,Male ,Materials science ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Science ,Green Fluorescent Proteins ,Color ,Biocompatible Materials ,Nanotechnology ,Biosensing Techniques ,Protein tag ,Protein Engineering ,010402 general chemistry ,01 natural sciences ,Article ,Fluorescence ,Rats, Sprague-Dawley ,03 medical and health sciences ,Fluorescence resonance energy transfer ,Live cell imaging ,Animals ,Super-resolution microscopy ,Coloring Agents ,Fluorescent Dyes ,030304 developmental biology ,Neurons ,0303 health sciences ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Rational design ,STED microscopy ,[CHIM.ORGA] Chemical Sciences/Organic chemistry ,Directed evolution ,Fusion protein ,Rats ,0104 chemical sciences ,3. Good health ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Female ,Electronics ,Chemical tools ,Visible spectrum - Abstract
Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques., Fluorescent reporters spanning the visible spectrum are needed for imaging live cells and organisms. Here the authors report a collection of fluorogenic chromophores that cover the visible spectrum from blue to red using a single engineered and optimised protein tag.
- Published
- 2021
4. An RNAi Screen in a Novel Model of Oriented Divisions Identifies the Actin-Capping Protein Z β as an Essential Regulator of Spindle Orientation
- Author
-
Rosette Goïame, Léo Valon, Florencia di Pietro, Xavier Morin, Yingbo Li, Auguste Genovesio, Physico-Chimie-Curie (PCC), Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC), State Key Laboratory of Natural and Biomimetic Drugs, Peking University [Beijing], Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Paul-Valéry - Montpellier 3 (UM3), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (IBENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
- Subjects
0301 basic medicine ,CapZ Actin Capping Protein ,Dynein ,Regulator ,Spindle Apparatus ,Biology ,Actin cytoskeleton ,General Biochemistry, Genetics and Molecular Biology ,Cell biology ,03 medical and health sciences ,030104 developmental biology ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Microtubule ,Cell cortex ,Dynactin ,Humans ,RNA Interference ,General Agricultural and Biological Sciences ,Mitosis ,030217 neurology & neurosurgery ,Actin ,Cell Division ,ComputingMilieux_MISCELLANEOUS ,HeLa Cells - Abstract
Summary Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. We developed a new cellular model of oriented cell divisions combining micropatterning and localized recruitment of Gαi and performed an RNAi screen for regulators acting downstream of Gαi. Remarkably, this screen revealed a unique subset of dynein regulators as being essential for spindle orientation, shedding light on a core regulatory aspect of oriented divisions. We further analyze the involvement of one novel regulator, the actin-capping protein CAPZB. Mechanistically, we show that CAPZB controls spindle orientation independently of its classical role in the actin cytoskeleton by regulating the assembly, stability, and motor activity of the dynein/dynactin complex at the cell cortex, as well as the dynamics of mitotic microtubules. Finally, we show that CAPZB controls planar divisions in vivo in the developing neuroepithelium. This demonstrates the power of this in cellulo model of oriented cell divisions to uncover new genes required in spindle orientation in vertebrates.
- Published
- 2017
5. Loss of the canonical spindle orientation function in the Pins/LGN homolog AGS3
- Author
-
Xavier Morin, Karine Loulier, Mehdi Saadaoui, Fumio Matsuzaki, Marina Mapelli, Vaibhav Jadhav, Daijiro Konno, and Rosette Goïame
- Subjects
0301 basic medicine ,Cell type ,genetic structures ,Cell Cycle Proteins ,Neocortex ,Spindle Apparatus ,Biology ,Biochemistry ,Microtubules ,03 medical and health sciences ,Mice ,Protein Domains ,Cell cortex ,Genetics ,medicine ,Animals ,Drosophila Proteins ,Molecular Biology ,Loss function ,Mitotic spindle orientation ,Guanine Nucleotide Dissociation Inhibitors ,Spindle orientation ,Scientific Reports ,Cell Polarity ,Nuclear Proteins ,Anatomy ,030104 developmental biology ,medicine.anatomical_structure ,nervous system ,sense organs ,Astral microtubules ,Carrier Proteins ,Neuroscience ,Function (biology) ,psychological phenomena and processes ,Cell Division ,Protein Binding - Abstract
In many cell types, mitotic spindle orientation relies on the canonical “LGN complex” composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαi in vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species‐specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.
- Published
- 2017
6. Integration of H-2Z1, a Somatosensory Cortex-Expressed Transgene, Interferes with the Expression of theSatb1andTbc1d5Flanking Genes and Affects the Differentiation of a Subset of Cortical Interneurons
- Author
-
Rosette Goïame, Nicolas Narboux-Nême, Marie-Geneviève Mattéi, Marion Wassef, Michel Cohen-Tannoudji, Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut du Fer à Moulin, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Génétique Médicale et Génomique Fonctionnelle (GMGF), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Génétique fonctionnelle de la Souris, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), This work was supported by CNRS, École Normale Supérieure, and Institut Pasteur, and by Association pour la Recherche sur le Cancer grants (M.W.) and Pasteur–Weizmann grant (M.C.-T.). N.N.-N. was supported by fellowships from Ministère de l'Education Nationale, de la Recherche, et de la Technologie, and Fondation Pour La Recherche Médicale en France, We acknowledge the technical help of Sandrine Vandormael-Pournin. We thank Patricia Gaspar for continuous support and members of the Garel and Spassky groups for reagents and advice., Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Cohen-Tannoudji, Michel, Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), and Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
MESH: Cell Differentiation ,MESH: Mice, Transgenic ,Transgene ,Mice, Inbred Strains ,Mice, Transgenic ,Biology ,Somatosensory system ,MESH: Mice, Inbred Strains ,MESH: Somatosensory Cortex ,Insertional mutagenesis ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Interneurons ,[SDV.BDD] Life Sciences [q-bio]/Development Biology ,medicine ,Animals ,Enhancer trap ,MESH: Animals ,GABAergic Neurons ,MESH: Mice ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,030304 developmental biology ,Cerebral Cortex ,0303 health sciences ,General Neuroscience ,Pontine nuclei ,Cell Differentiation ,Matrix Attachment Region Binding Proteins ,Somatosensory Cortex ,Articles ,MESH: Lac Operon ,Barrel cortex ,MESH: Gene Expression Regulation ,MESH: Interneurons ,Molecular biology ,MESH: Cerebral Cortex ,Cell biology ,medicine.anatomical_structure ,Gene Expression Regulation ,Lac Operon ,MESH: Matrix Attachment Region Binding Proteins ,Cerebral cortex ,Regulatory sequence ,MESH: GABAergic Neurons ,030217 neurology & neurosurgery - Abstract
H-2Z1 is an enhancer trap transgenic mouse line in which the lacZ reporter delineates the somatosensory area of the cerebral cortex where it is expressed in a subset of layer IV neurons. In the search of somatosensory specific genes or regulatory sequences, we mapped the H-2Z1 transgene insertion site to chromosome 17, 100 and 460 kb away fromTbc1d5andSatb1flanking genes. We show here that insertion of the H-2Z1 transgene results in three distinct outcomes. First, a genetic background-sensitive expression oflacZin several brain and body structures. While four genes in a 1 Mb region around the insertion are expressed in the barrel cortex, H-2Z1 expression resembles more that of its two direct neighbors. Moreover, H-2Z1 closely reports most of the body and brain expression sites of theSatb1chromatin remodeling gene including tooth buds, thymic epithelium, pontine nuclei, fastigial cerebellar nuclei, and cerebral cortex. Second, the H-2Z1 transgene causes insertional mutagenesis ofTbc1d5andSatb1, leading to a strong decrease in their expressions. Finally, insertion of H-2Z1 affects the differentiation of a subset of cortical GABAergic interneurons, a possible consequence of downregulation of Satb1 expression. Thus, the H-2Z1 “somatosensory” transgene is inserted in the regulatory landscape of two genes highly expressed in the developing somatosensory cortex and reports for a subdomain of their expression profiles. Together, our data suggest that regulation of H-2Z1 expression results from local and remote genetic interactions.
- Published
- 2012
7. Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Progenitors
- Author
-
Rosette Goïame, Chooyoung Baek, Evelyne Fischer, Xavier Morin, and Samuel Tozer
- Subjects
0301 basic medicine ,Neurogenesis ,Ubiquitin-Protein Ligases ,Notch signaling pathway ,Golgi Apparatus ,Mitosis ,Cell Cycle Proteins ,Chick Embryo ,Biology ,Spindle pole body ,03 medical and health sciences ,symbols.namesake ,PCM1 ,Neural Stem Cells ,Asymmetric cell division ,Animals ,Centrioles ,Centrosome ,Receptors, Notch ,General Neuroscience ,Golgi apparatus ,Cell biology ,030104 developmental biology ,symbols ,Centriolar satellite ,Cell Division ,Signal Transduction - Abstract
Unequal centrosome maturation correlates with asymmetric division in multiple cell types. Nevertheless, centrosomal fate determinants have yet to be identified. Here, we show that the Notch pathway regulator Mindbomb1 co-localizes asymmetrically with centriolar satellite proteins PCM1 and AZI1 at the daughter centriole in interphase. Remarkably, while PCM1 and AZI1 remain asymmetric during mitosis, Mindbomb1 is associated with either one or both spindle poles. Asymmetric Mindbomb1 correlates with neurogenic divisions and Mindbomb1 is inherited by the prospective neuron. By contrast, in proliferative divisions, a supplementary pool of Mindbomb1 associated with the Golgi apparatus in interphase is released during mitosis and compensates for Mindbomb1 centrosomal asymmetry. Finally, we show that preventing Mindbomb1 centrosomal association induces reciprocal Notch activation between sister cells and promotes symmetric divisions. Thus, we uncover a link between differential centrosome maturation and Notch signaling and reveal an unexpected compensatory mechanism involving the Golgi apparatus in restoring symmetry in proliferative divisions.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.