1. Diffusion Monte Carlo using domains in configuration space
- Author
-
Roland Assaraf, Emmanuel Giner, Vijay Gopal Chilkuri, Pierre-François Loos, Anthony Scemama, Michel Caffarel, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Systèmes étendus et magnétisme (LCPQ) (SEM), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), European Project: 863481,PTEROSOR, and European Project: 952165,H2020,H2020-INFRAEDI-2019-1,Trex(2020)
- Subjects
Chemical Physics (physics.chem-ph) ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,FOS: Physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
The sampling of the configuration space in diffusion Monte Carlo (DMC) is done using walkers moving randomly. In a previous work on the Hubbard model [\href{https://doi.org/10.1103/PhysRevB.60.2299}{Assaraf et al.~Phys.~Rev.~B \textbf{60}, 2299 (1999)}], it was shown that the probability for a walker to stay a certain amount of time in the same state obeys a Poisson law and that the on-state dynamics can be integrated out exactly, leading to an effective dynamics connecting only different states. Here, we extend this idea to the general case of a walker trapped within domains of arbitrary shape and size. The equations of the resulting effective stochastic dynamics are derived. The larger the average (trapping) time spent by the walker within the domains, the greater the reduction in statistical fluctuations. A numerical application to the Hubbard model is presented. Although this work presents the method for finite linear spaces, it can be generalized without fundamental difficulties to continuous configuration spaces., 14 pages, 4 figures
- Published
- 2023