1. All-polymer-based ammonia gas sensor: applying insights from the morphology-driven ac electrical performance
- Author
-
Ana Carolina Kelmer, Cleidinéia Cavalcante da Costa, and Rodrigo Fernando Bianchi
- Subjects
conductivity ,printed devices ,sensing devices ,strain gauges ,topology ,Chemical technology ,TP1-1185 - Abstract
Abstract This paper investigates the electrical, morphological, and mechanical behavior of ultrathin layer-by-layer polyaniline/poly(vinyl sulfonic acid) (PANI/PVS) ultrathin films for ammonia gas sensing. Atomic force microscopy shows that the PANI/PVS surface's roughness increases almost linearly with the number of PANI/PVS bilayers, while the surface morphology varies from a rod-like structure to a film-like architecture. Impedance measurements and their representation by a Cole-Cole model confirm this transition at ~15 bilayers. The designed sensor shows low response time (< 1 min), an optimal operating frequency range (1–100 Hz), high stability and sensibility to ammonia (~ 98 kΩ/ppm), and low sensibility to strain (~ 3.6 kΩ/%). This study suggests that hopping carriers' concentration remains constant, and hopping carriers' mobility changes with the number of bilayers. The simultaneous analysis of morphology with complex impedance measurements is a strategy for enhancing the electrical performance of low-cost and flexible organic sensing devices.
- Published
- 2024
- Full Text
- View/download PDF