1. Elucidating the molecular basis of PECAM-1 and Tie2 interaction from binding dynamics and complex formation.
- Author
-
Li H, Wang R, Xu P, Yuan C, Huang M, and Jiang L
- Subjects
- Humans, Animals, HEK293 Cells, Surface Plasmon Resonance, Drosophila metabolism, Endothelial Cells metabolism, Recombinant Proteins metabolism, Recombinant Proteins genetics, Recombinant Proteins chemistry, Hydrogen-Ion Concentration, Platelet Endothelial Cell Adhesion Molecule-1 metabolism, Protein Binding, Receptor, TIE-2 metabolism, Receptor, TIE-2 genetics
- Abstract
Background: Endothelial hyperpermeability-induced vascular dysfunction is a prevalent and significant characteristic in critical illnesses such as sepsis and other conditions marked by acute systemic inflammation. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and Tie2 serve as transmembrane receptors within endothelial cells (ECs), playing pivotal roles not only in maintaining EC-EC junctions but also in influencing vasculogenesis, vessel homeostasis, and vascular remodeling., Objectives: At present, the molecular basis of the PECAM-1-Tie2 interaction remains inadequately elucidated. In the study, recombinant soluble PECAM-1 (sPECAM-1) and Tie2 (sTie2) were expressed by Drosophila S2 and HEK293 expression systems, respectively. The interactions between sPECAM-1 and sTie2 were investigated using the Surface Plasmon Resonance (SPR) and size-exclusion chromatography methods. An immunofluorescence assay was used to detect the binding of sPECAM-1 and sTie2 on endothelial cells., Results: PECAM-1 was found to bind with sTie2 in a sodium and pH-dependent manner as confirmed by the ELISA, the D5-D6 domains of PECAM-1 might play a crucial role in binding with sTie2. Surface Plasmon Resonance (SPR) results showed that the full length of sPECAM-1 has the strongest binding affinity (K
D = 48.4 nM) with sTie2, compared to sPECAM-1-D1-D4 and sPECAM-1-D1-D2. This result is consistent with that in the ELISA. In addition, size-exclusion chromatography demonstrated that sPECAM-1, sTie2, and Ang1 can form a ternary complex., Conclusion: In this study, we determined that sPECAM-1 binds to sTie2 in a pH and sodium-dependent manner. The full length of sPECAM-1 has the strongest binding affinity, and the D5-D6 domains in sPECAM-1 play a crucial role in the interaction between sPECAM-1 and sTie2., Competing Interests: Declaration of competing interest The authors declare that there are no conflicts of interest., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF