Back to Search Start Over

Yak DEFB123 alleviates lung injury caused by Klebsiella pneumoniae through MAPKs signaling pathway.

Authors :
Zhang N
Zheng Y
Wei Y
Wang L
Chen X
Li J
Source :
Veterinary microbiology [Vet Microbiol] 2024 Nov; Vol. 298, pp. 110248. Date of Electronic Publication: 2024 Sep 10.
Publication Year :
2024

Abstract

Beta-defensins, such as β-defensin 123 (DEFB123), are vital components of the immune system's defense against infections due to their strong antimicrobial properties and capacity for modulating the body's immunological responses. In this study, we successfully cloned and analyzed the yak DEFB123 gene sequence. Subsequently, we obtained recombinant protein DEFB123 (rDEFB123) through prokaryotic expression. Our results demonstrate that rDEFB123 effectively inhibits the growth of Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. Furthermore, rDEFB123 enhances the phagocytic activity of macrophages by regulating specific factors. In a mouse model infected with Klebsiella pneumoniae, the administration of rDEFB123 showed significantly lower levels of serum ALT and AST compared to the control group. Moreover, IFN-γ and IgG were significantly increased in the rDEFB123-treated groups, indicating an enhanced immune response. In the MAPKs signaling pathway of the infected mouse lungs, the expressions of JNK, TRAF2, TRAF6, MIF, and IL-1β genes were downregulated in the rDEFB123-treated groups. Moreover, the levels of p-JNK protein were significantly decreased in these groups as well. Klebsiella pneumoniae caused systemic infection with organ damage in mice. However, the administration of rDEFB123 suppressed the expressions of inflammatory factors, thereby mitigating organ injury and regulating the activity of apoptosis-related factors to enhance immunity. These findings provide valuable theoretical data for future exploration of the functionality and potential applications of DEFB123 in yak.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-2542
Volume :
298
Database :
MEDLINE
Journal :
Veterinary microbiology
Publication Type :
Academic Journal
Accession number :
39265281
Full Text :
https://doi.org/10.1016/j.vetmic.2024.110248