9 results on '"RIXS‐MCD"'
Search Results
2. 1s2p Resonant Inelastic X-ray Scattering Magnetic Circular Dichroism as a probe for the local and non-local orbitals in CrO2.
- Author
-
Zimmermann, Patric, Bouldi, Nadejda, Hunault, Myrtille O.J.Y., Sikora, Marcin, Ablett, James M., Rueff, Jean-Pascal, Lebert, Blair, Sainctavit, Philippe, de Groot, Frank M.F., and Juhin, Amélie
- Subjects
- *
X-ray scattering , *MAGNETIC circular dichroism , *CHROMIUM compounds , *GROUND state (Quantum mechanics) , *CRYSTAL field theory - Abstract
We have determined the magnetic ground state of the half-metal CrO 2 based on 1s2p Resonant Inelastic X-ray Scattering Magnetic Circular Dichroism (RIXS-MCD) experiments. The two-dimensional RIXS-MCD map displays the 1s X-ray absorption spectrum combined with the 1s2p X-ray emission decay, where there is a large MCD contrast in the final state involving the 2p core hole. Our measurements show that the Cr K pre-edge structure is dominated by dipolar contributions and the quadrupole peak is invisible in direct K pre-edge absorption. Using RIXS-MCD, we reveal that the quadrupole 1s3d pre-edge has a large MCD contrast, which appears at lower energy with respect to the K pre-edge maximum. We use crystal field multiplet calculations to model the excitonic RIXS-MCD spectral shape in tetragonal ( D 4 h ) symmetry. The RIXS-MCD is strongly sensitive to the ground state distortion of the Cr 4+ sites. The calculations of the RIXS-MCD maps suggest that the 3d spin–orbit interaction is fully quenched ( ζ 3d = 0 meV) and the ground state electron configuration must contain a 3 B 2 g (D 4 h ) contribution, which is required to explain the appearance of the Magnetic Circular Dichroism (MCD) in the Cr K pre-edge. This is in apparent contrast with the compressed tetragonal distortion. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. Nanoscale Distribution of Magnetic Anisotropies in Bimagnetic Soft Core-Hard Shell MnFe2O4@CoFe2O4 Nanoparticles.
- Author
-
Daffé, Niéli, Sikora, Marcin, Rovezzi, Mauro, Bouldi, Nadejda, Gavrilov, Véronica, Neveu, Sophie, Choueikani, Fadi, Ohresser, Philippe, Dupuis, Vincent, Taverna, Dario, Gloter, Alexandre, Arrio, Marie‐Anne, Sainctavit, Philippe, and Juhin, Amélie
- Subjects
MAGNETIC anisotropy ,MAGNETIC cores ,STRUCTURAL shells ,MANGANESE compounds ,COBALT compounds ,METAL nanoparticles - Abstract
The nanoscale distribution of magnetic anisotropies is measured in core@shell MnFe
2 O4 @CoFe2 O4 7.0 nm particles using a combination of element selective magnetic spectroscopies with different probing depths. As this picture is not accessible by any other technique, emergent magnetic properties are revealed. The coercive field is not constant in a whole nanospinel. The very thin (0.5 nm) CoFe2 O4 hard shell imposes a strong magnetic anisotropy to the otherwise very soft MnFe2 O4 core: a large gradient in coercivity is measured inside the MnFe2 O4 core with lower values close to the interface region, while the inner core presents a substantial coercive field (0.54 T) and a very high remnant magnetization (90% of the magnetization at saturation). [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
4. Impact of chemical segregation on magnetic anisotropy of iron oxide films.
- Author
-
Pitala, K., Ablett, J.M., Szkudlarek, A., Kollbek, K., and Sikora, M.
- Subjects
- *
FERRIC oxide , *OXIDE coating , *MAGNETRON sputtering , *MAGNETIC circular dichroism , *HIGH resolution spectroscopy , *MAGNETIC anisotropy , *MAGNETIC films , *PERPENDICULAR magnetic anisotropy - Abstract
• Iron oxide films with variable magnetic anisotropy made by magnetron sputtering. • High resolution X-ray spectroscopy insights chemical phase composition. • Hard X-ray magnetometry extracts substrate-free magnetization profiles. • Coexistence of ferromagnetic and (super)paramagnetic components is proved. • Vertically elongated magnetite intrusions enhance perpendicular magnetic anisotropy. Texture-induced magnetic anisotropy is realized in iron oxide thin films deposited at room temperature onto Si(1 0 0) substrates using reactive magnetron sputtering of a Fe 2 O 3 target. Diversities in morphology and magnetic properties are evidenced by electron microscopy and vibrating sample magnetometry. Additional insight provided by X-ray absorption spectroscopy and X-ray magnetic circular dichroism reveals fundamental differences in chemical composition and element selective magnetic properties between the films deposited in the presence of Ar and N 2 reactive gas. Taking advantage of hard X-ray magnetometry, substrate-free magnetization profiles of the films were derived and deconvoluted into major magnetic components. In addition to ferromagnetic components with anisotropy defined by texture a significant contribution of (super)paramagnetic components due to rich interface structure of these nanocomposite films is observed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Quanty4RIXS: a program for crystal field multiplet calculations of RIXS and RIXS–MCD spectra using Quanty
- Author
-
Zimmermann, Patric, Green, Robert J., Haverkort, Maurits W., De Groot, Frank M. F., Zimmermann, Patric, Green, Robert J., Haverkort, Maurits W., and De Groot, Frank M. F.
- Abstract
Some initial instructions for the Quanty4RIXS program written in MATLAB® are provided. The program assists in the calculation of 1s 2p RIXS and 1s 2p RIXS–MCD spectra using Quanty. Furthermore, 1s XAS and 2p 3d RIXS calculations in different symmetries can also be performed. It includes the Hartree–Fock values for the Slater integrals and spin–orbit interactions for several 3d transition metal ions that are required to create the .lua scripts containing all necessary parameters and quantum mechanical definitions for the calculations. The program can be used free of charge and is designed to allow for further adjustments of the scripts.
- Published
- 2018
6. Anisotropies and Magnetic Couplings of Texturable Ferrofluids
- Author
-
Daffé, Niéli, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, Philippe Sainctavit, Philippe Ohresser, Vincent Dupuis, and Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Ferrofluids ,Rixs-Mcd ,Xmcd ,Nanospinels ,Cellule liquide ,Nanoparticles ,Ferrofluides ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Anisotropies magnétiques - Abstract
Ferrofluids are colloidal suspensions of magnetic nanoparticles dispersed in a carrier liquid. The intimate interaction between the magnetic nanoparticles and the liquid provides a unique system, from both fundamental and industrial application point of views, whose flow and properties can be precisely controlled using an external magnetic field. Magnetic nanoparticles of spinel ferrites MFe2O4 (M = Fe2+, Co2+, Mn2+…) are of particular scientific interest and have been extensively studied for their electrical and magnetic properties. Spinel ferrites find potential applications, notably in storage devices, for computers, or hyperthermia, for cancer treatment, where high magnetic anisotropy energies are required at the nanoscale. However, deeper knowledges of the fine mechanisms playing a significant role on the magnetic anisotropies existing in the nanospinels are necessary to help the creation of rationalized materials with controlled magnetic anisotropies for the requirement of the system. In this thesis, we have used X-ray Magnetic Circular Dichroism (XMCD) as an original approach for probing the magnetic anisotropies and magnetic couplings of nanospinels obtained in ferrofluids. The nanoparticles are iron bearing spinels for which cobalt ions have been introduced in the spinel structure of the nanoparticles as a true makers of magnetic anisotropy. First, magnetic nanospinels have been synthesized by tuning their size and composition and using different synthesis processes. XMCD investigations revealed that the coercive field of the nanospinels is governed by the concentration of Co2+ ions sitting in octahedral sites of the spinel structure, and this can be directly linked to some synthesis parameters. Then, we have investigated core@shell nanoparticles, which can be synthesized with an appropriate choice of magnetic anisotropies for the core and the shell in order to tailor optimal magnetic properties. In the case of MnFe2O4@CoFe2O4, our findings reveal that the very thin CoFe2O4 shell imposes a strong magnetic anisotropy to the otherwise very soft MnFe2O4 core. The other class of ferrofluids that has been investigated during this thesis are binary ferrofluids that are constituted of two different types of magnetic nanoparticles. For such systems, the carrier liquid must be preserved to understand the magnetic interactions in the ferrofluid as they are. Another motivation of this thesis was thus to extend XMCD to the in situ investigation of the nanospinels dispersed in ferrofluids. We have been started a liquid cell development in the DEIMOS beamline at SOLEIL. The setup is still in progress and is aimed at being compatible with soft X-Rays short penetration depth and ultra-high vacuum environment. Hard X-ray photon-in/photon-out spectroscopy coupled to XMCD (1s2p RIXS-MCD) can be a very valuable alternative to soft X-ray XMCD at K-edge of 3d elements when liquid cell sample environment is required. The instrumental development of a liquid cell used with 1s2p RIXS-MCD spectroscopy allowed us to investigate the nanoparticles directly in the ferrofluids revealing interparticles magnetic couplings in binary ferrofluids.; Les ferrofluides sont des suspensions colloïdales de nanoparticules magnétiques dispersées dans un liquide porteur. La possibilité de moduler les propriétés des ferrofluides in situ en appliquant un champ magnétique externe leur procure un fort potentiel d’étude, à la fois d’un point de vue fondamental ou pour des applications industrielles variées. En particulier, les nanospinels de ferrite ferrimagnétiques MFe2O4 (M = Fe2+, Co2+, Mn2+…) sont largement étudiés pour leurs propriétés électriques et magnétiques. Plus spécifiquement, une forte énergie d’anisotropie de ces matériaux à l’échelle nanométrique est requise pour des applications dans le stockage de l’information ou l’hyperthermie pour lesquels ils sont considérés. Une connaissance fine des mécanismes régissant ces propriétés d’anisotropies magnétiques est ainsi primordiale pour la création de nouveaux objets aux propriétés magnétiques contrôlées à l’échelle nanométrique. L’originalité de notre approche consiste à utiliser une technique fine du magnétisme, le dichroïsme magnétique circulaire des rayons X (XMCD) à l’étude des anisotropies et couplages magnétiques des nanospinels composants les ferrofluides. Au cours de cette thèse, nous nous sommes intéressés à différentes stratégies possibles pour induire une forte énergie d’anisotropie aux nanospinels de ferrite par l’utilisation de cobalt. Des nanoparticules de tailles et compositions variées ont été obtenues par différentes voies de synthèse, et nous démontrons que l’anisotropie magnétique de ces systèmes est fortement gouvernée par la symétrie de site du Co2+ en structure spinel qui peut être directement corrélé au processus de synthèse utilisé. Nous nous sommes aussi intéressés à l’ordre et au couplage magnétique de ferrite spinels structurés en coeur-coquille, dont le cœur et la coquille sont réalisés à partir de matériaux aux propriétés magnétiques intrinsèques différentes. Nous montrons ainsi que pour des nanospinels MnFe2O4@CoFe2O4, la très fine coquille formée de CoFe2O4 impose une forte anisotropie magnétique au cœur doux de MnFe2O4. Enfin, nous nous sommes intéressés à une troisième classe de ferrofluide à base de nanospinels, les ferrofluides binaires, constitué d’un mélange physique de ferrofluides aux propriétés magnétiques intrinsèques différentes. Pour de tels systèmes, il est essentiel de préserver le liquide porteur du ferrofluide pour ne pas dénaturer les interactions entre particules existantes. L’un des objectifs de cette thèse fut donc d’étendre la technique du XMCD à l’étude d’échantillons de ferrofluides in situ, dans leur phase liquide ou gelée. Nous avons débuté la conception d’une cellule liquide compatible avec les rayons X mous et un environnement ultra-vide sur la ligne de lumière DEIMOS (SOLEIL) qui est toujours en développement...
- Published
- 2016
7. Nanoscale distribution of magnetic anisotropies in bimagnetic soft core-hard shell MnFe$_2$O$_4$@CoFe$_2$O$_4$ nanoparticles
- Author
-
Philippe Sainctavit, Niéli Daffé, Sophie Neveu, Marcin Sikora, Nadejda Bouldi, Véronica Gavrilov, Amélie Juhin, Dario Taverna, Fadi Choueikani, Vincent Dupuis, Mauro Rovezzi, Philippe Ohresser, Marie-Anne Arrio, Alexandre Gloter, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), AGH University of Science and Technology [Krakow, PL] (AGH UST), European Synchrotron Radiation Facility (ESRF), Dispositifs et Instrumentation en Optoélectronique et micro-ondes (DIOM), Université Jean Monnet [Saint-Étienne] (UJM), Laboratoire de Physique des Solides (LPS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Materials science ,RIXS ,XAS ,Nanoparticle ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Magnetization ,RIXS‐MCD ,[CHIM]Chemical Sciences ,core–shell nanoparticles ,Anisotropy ,Saturation (magnetic) ,Nanoscopic scale ,magnetic anisotropy ,Condensed Matter - Materials Science ,Condensed matter physics ,XMCD ,Mechanical Engineering ,Inner core ,Materials Science (cond-mat.mtrl-sci) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Coercivity ,spinel ferrites ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,Magnetic anisotropy ,Mechanics of Materials ,0210 nano-technology - Abstract
The nanoscale distribution of magnetic anisotropies was measured in core@shell MnFe$_2$O$_4$@CoFe$_2$O$_4$ 7.0 nm particles using a combination of element selective magnetic spectroscopies with different probing depths. As this picture is not accessible by any other technique, emergent magnetic properties were revealed. The coercive field is not constant in a whole nanospinel. The very thin (0.5 nm) CoFe$_2$O$_4$ hard shell imposes a strong magnetic anisotropy to the otherwise very soft MnFe$_2$O$_4$ core: a large gradient in coercivity was measured inside the MnFe$_2$O$_4$ core with lower values close to the interface region, while the inner core presents a substantial coercive field (0.54 T) and a very high remnant magnetization (90% of the magnetization at saturation)., Comment: 27 pages (including supporting information)
- Published
- 2016
- Full Text
- View/download PDF
8. X-ray magnetic circular dichroism measured at the FeK-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements
- Author
-
Fabrice Wilhelm, Andrei Rogalev, Philippe Sainctavit, Katharina Ollefs, Adriano Filipponi, Pieter Glatzel, Amélie Juhin, Marcin Sikora, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen [Essen], Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology [Krakow, PL] (AGH UST), Dipartimento di Scienze Fisiche e Chimiche [L'Aquila], Università degli Studi dell'Aquila (UNIVAQ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Universität Duisburg-Essen = University of Duisburg-Essen [Essen], and Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ)
- Subjects
Absorption spectroscopy ,Yttrium iron garnet ,02 engineering and technology ,01 natural sciences ,chemistry.chemical_compound ,RIXS-MCD ,0103 physical sciences ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,corehole lifetime ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Spectroscopy ,XMCD ,Magnetic circular dichroism ,Chemistry ,Scattering ,Physik (inkl. Astronomie) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,broadening ,Materials Science (all) ,Resonant inelastic X-ray scattering ,K-edge ,X-ray magnetic circular dichroism ,Atomic physics ,0210 nano-technology - Abstract
International audience; X-ray Magnetic Circular Dichroism is measured at the Fe K pre-edge in Yttrium Iron Garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in Total Fluorescence Yield (TFY) with an extremely high signal-to-noise ratio enables to gain a factor of 2.4 in the XMCD intensity. Ligand Field Multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by Resonant Inelastic X-ray Scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of ∼4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.
- Published
- 2016
9. Quanty4RIXS: a program for crystal field multiplet calculations of RIXS and RIXS-MCD spectra using Quanty.
- Author
-
Zimmermann P, Green RJ, Haverkort MW, and de Groot FMF
- Abstract
Some initial instructions for the Quanty4RIXS program written in MATLAB
® are provided. The program assists in the calculation of 1s 2p RIXS and 1s 2p RIXS-MCD spectra using Quanty. Furthermore, 1s XAS and 2p 3d RIXS calculations in different symmetries can also be performed. It includes the Hartree-Fock values for the Slater integrals and spin-orbit interactions for several 3d transition metal ions that are required to create the .lua scripts containing all necessary parameters and quantum mechanical definitions for the calculations. The program can be used free of charge and is designed to allow for further adjustments of the scripts., (open access.)- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.