18 results on '"R. Bolis"'
Search Results
2. Laser-driven shock compression of 'synthetic planetary mixtures' of water, ethanol, and ammonia
- Author
-
M. Guarguaglini, J.-A. Hernandez, T. Okuchi, P. Barroso, A. Benuzzi-Mounaix, M. Bethkenhagen, R. Bolis, E. Brambrink, M. French, Y. Fujimoto, R. Kodama, M. Koenig, F. Lefevre, K. Miyanishi, N. Ozaki, R. Redmer, T. Sano, Y. Umeda, T. Vinci, and A. Ravasio
- Subjects
Medicine ,Science - Abstract
Abstract Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia “synthetic planetary mixture” (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000–4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000–14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.
- Published
- 2019
- Full Text
- View/download PDF
3. Electrical conductivity of warm dense silica from double-shock experiments
- Author
-
Alessandra Benuzzi-Mounaix, Erik Brambrink, J.-A. Hernandez, Tommaso Vinci, M. Guarguaglini, Alessandra Ravasio, François Soubiran, R. Bolis, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Oslo (UiO), ANR POMPEI (Grant No. ANR-16-CE31-0008), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE31-0008,POMPEI,Propriétés de Mélanges de H2ONH3CH4 d'interet pour les intérieurs planétaires et les exoplanètes.(2016)
- Subjects
Equation of state ,Materials science ,Electronic properties and materials ,Science ,General Physics and Astronomy ,01 natural sciences ,7. Clean energy ,General Biochemistry, Genetics and Molecular Biology ,Article ,Physics::Geophysics ,Electrical resistivity and conductivity ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Range (particle radiation) ,Fusion ,Multidisciplinary ,General Chemistry ,Mechanics ,Laser-produced plasmas ,Shock (mechanics) ,Planetary science ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Physics::Space Physics ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics ,Dynamo - Abstract
Understanding materials behaviour under extreme thermodynamic conditions is fundamental in many branches of science, including High-Energy-Density physics, fusion research, material and planetary science. Silica (SiO2) is of primary importance as a key component of rocky planets’ mantles. Dynamic compression is the most promising approach to explore molten silicates under extreme conditions. Although most experimental studies are restricted to the Hugoniot curve, a wider range of conditions must be reached to distill temperature and pressure effects. Here we present direct measurements of equation of state and two-colour reflectivity of double-shocked α-quartz on a large ensemble of thermodynamic conditions, which were until now unexplored. Combining experimental reflectivity data with numerical simulations we determine the electrical conductivity. The latter is almost constant with pressure while highly dependent on temperature, which is consistent with simulations results. Based on our findings, we conclude that dynamo processes are likely in Super-Earths’ mantles., Warm dense silica is a key component in rocky planets’ mantles, but reproducing the relevant conditions in experiments is challenging. Here the authors use a double-shock technique to achieve such conditions and measure the reflectivity in situ, providing insight into the conductivity and its possible impact on dynamo processes in super-Earths’ mantles.
- Published
- 2021
4. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures
- Author
-
A. E. Gleason, Eric Galtier, Bob Nagler, R. Bolis, Alessandra Benuzzi-Mounaix, Wendy L. Mao, Siegfried Glenzer, Alessandra Ravasio, A. K. Schuster, Guillaume Fiquet, Gaston Garbarino, Hae Ja Lee, J.-A. Hernandez, Guillaume Morard, M. Guarguaglini, Mohamed Mezouar, Tommaso Vinci, Denis Andrault, Byeongkwan Ko, M. A. Baron, Dimosthenis Sokaras, Roberto Alonso-Mori, Sang Heon Shim, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Arizona State University [Tempe] (ASU), Stanford University [Stanford], SLAC National Accelerator Laboratory (SLAC), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), ANR-16-CE31-0008,POMPEI,Propriétés de Mélanges de H2ONH3CH4 d'interet pour les intérieurs planétaires et les exoplanètes.(2016), Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), University of Oslo (UiO), Stanford University, Department of Geological Sciences [Stanford] (GS), Stanford EARTH, Stanford University-Stanford University, Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), ANR POMPEI (Grant No. ANR-16-CE31-0008), European Project: 670787,H2020,ERC-2014-ADG,PLANETDIVE(2016), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC)
- Subjects
Diffraction ,Multidisciplinary ,Materials science ,010504 meteorology & atmospheric sciences ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Thermodynamics ,Atmospheric temperature range ,01 natural sciences ,Silicate ,Diamond anvil cell ,Mantle (geology) ,Amorphous solid ,chemistry.chemical_compound ,chemistry ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,X-ray crystallography ,Core–mantle boundary ,Physical Sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience; Properties of liquid silicates under high pressure and high temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here, we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely-used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
- Published
- 2020
5. X-ray absorption near edge spectroscopy study of warm dense MgO
- Author
-
Stephane Mazevet, N. J. Hartley, R. Bolis, Fabien Dorchies, Alessandra Ravasio, V. Recoules, F. Remus, Erik Brambrink, M. Guarguaglini, Tommaso Vinci, François Guyot, Norimasa Ozaki, J. Bouchet, N. Jourdain, R. Musella, Alessandra Benuzzi-Mounaix, J.-A. Hernandez, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Photon Pioneers Center, Osaka University, Osaka University [Osaka], Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE31-0008,POMPEI,Propriétés de Mélanges de H2ONH3CH4 d'interet pour les intérieurs planétaires et les exoplanètes.(2016), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Graduate School of Engineering Science [Osaka], Osaka University, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Material and Life Science, Graduate School of Engineering, Osaka University, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Graduate School of Engineering Science, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Saclay-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Shock wave ,Metallization process ,Band gap ,Ionic bonding ,02 engineering and technology ,01 natural sciences ,Molecular physics ,Spectral line ,Shock waves ,Condensed Matter::Materials Science ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,Spectroscopy ,Absorption (electromagnetic radiation) ,ComputingMilieux_MISCELLANEOUS ,Phase diagram ,Physics ,[PHYS]Physics [physics] ,High-density liquid ,Lasers ,X-ray absorption spectroscopy ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,XANES ,Laser plasma interactions ,Phase transitions ,0210 nano-technology - Abstract
International audience; We report time-resolved X-ray Absorption Near Edge Spectroscopy (XANES) measurements of warm dense MgO. We used a high power nanosecond pulse to drive a strong uniform shock wave into an MgO sample, and a picosecond pulse to generate a broadband X-ray source near the Mg K-edge. We used this setup to obtain XANES spectra across a large area of the phase diagram, with densities up to 6.8 g/cc and temperatures up to 30 000 K, conditions at which no prior investigations of electronic and ionic structure exist. Our XANES results, together with quantum molecular dynamic simulations, demonstrate that the sample metallizes due to the bandgap closure as it melts, after which it shows typical behavior for a disordered ionic liquid. Published under license by AIP Publishing. https://doi.
- Published
- 2019
6. Laser based method for surface tension and density measurements for liquid refractory metals (Nb, Ta, and W)
- Author
-
Matthieu Schneider, R. Bolis, Morgan Dal, Rémy Fabbro, Frédéric Coste, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, and HESAM Université (HESAM)-HESAM Université (HESAM)
- Subjects
Work (thermodynamics) ,Controlled atmosphere ,Liquid metal ,Materials science ,experimental setup ,tantalum ,tungsten ,Biomedical Engineering ,Tantalum ,Niobium ,chemistry.chemical_element ,Sciences de l'ingénieur ,Surface tension ,[SPI]Engineering Sciences [physics] ,surface tension ,Thermal ,Composite material ,Instrumentation ,density ,Refractory metals ,Atomic and Molecular Physics, and Optics ,experimental setup, surface tension, density, liquid metal, tungsten, niobium, tantalum ,Electronic, Optical and Magnetic Materials ,chemistry ,liquid metal ,niobium - Abstract
The increase of process simulations in industry leads to the need of accurate knowledge of material thermal properties. As the determination of liquid metal properties is quite difficult, this article presents an experimental setup and a technique to estimate the surface tension and the density of several refractory metals (Nb, Ta, and W) and their variation with the temperature. This work is based on the well known sessile droplet method applied in a controlled atmosphere (Ar) and coupled to thermal measurements. The particularity of this work is the acquisition of measurements up to high temperatures (over 3500 K).The increase of process simulations in industry leads to the need of accurate knowledge of material thermal properties. As the determination of liquid metal properties is quite difficult, this article presents an experimental setup and a technique to estimate the surface tension and the density of several refractory metals (Nb, Ta, and W) and their variation with the temperature. This work is based on the well known sessile droplet method applied in a controlled atmosphere (Ar) and coupled to thermal measurements. The particularity of this work is the acquisition of measurements up to high temperatures (over 3500 K).
- Published
- 2019
7. Characterizing equation of state and optical properties of dynamically pre-compressed materials
- Author
-
M. Guarguaglini, Tommaso Vinci, Jean-Alexis Hernandez, Alessandra Ravasio, R. Bolis, Alessandra Benuzzi-Mounaix, Erik Brambrink, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE31-0008,POMPEI,Propriétés de Mélanges de H2ONH3CH4 d'interet pour les intérieurs planétaires et les exoplanètes.(2016)
- Subjects
Equation of state ,Materials science ,Thermodynamic state ,FOS: Physical sciences ,Warm dense matter ,Condensed Matter Physics ,Compression (physics) ,01 natural sciences ,7. Clean energy ,Measure (mathematics) ,Physics - Plasma Physics ,010305 fluids & plasmas ,Computational physics ,law.invention ,Shock (mechanics) ,Plasma Physics (physics.plasm-ph) ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,law ,Planet ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Pyrometer - Abstract
Characterising materials at pressures of several megabar and temperatures of a few thousand Kelvin is critical for the understanding of the Warm Dense Matter regime and to improve planetary models as these conditions are typical of planets' interiors. Today, laser-driven shock compression is the only technique to achieve multimegabar pressures, but the associated temperatures are too high to be representative of planetary states. Double-shock compression represents an alternative to explore lower temperatures. Here we present a method to create well-controlled double-shocked states and measure their thermodynamic state and optical reflectivity using standard optical diagnostics (Doppler velocimetry and optical pyrometry) in a laser-driven shock experiment. This method, which does not require the support of hydrodynamical simulations, is based on the application of generalised Rankine-Hugoniot relations together with a self impedance mismatch technique. A validation experiment has been performed at the LULI2000 facility (\'Ecole Polytechnique, France) on a sample of $\alpha$-quartz. A temperature $60 \%$ lower than along the principal Hugoniot has been obtained at 7.5 Mbar., Comment: 10 pages, 7 figures
- Published
- 2019
8. Ab initio calculations of the B1-B2 phase transition in MgO
- Author
-
F. Remus, J. Bouchet, Alessandra Benuzzi-Mounaix, V. Recoules, Guillaume Morard, R. Bolis, François Bottin, DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-12-BS04-0015,PlanetLab,Propriètés des planètes et des exoplanètes en laboratoire(2012)
- Subjects
Phase transition ,Phase boundary ,Thermal properties ,Materials science ,Shock (fluid dynamics) ,Lattice dynamics ,Anharmonicity ,Ab initio ,Thermodynamics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,First-principles calculations ,Condensed Matter::Materials Science ,Molecular dynamics ,Ab initio quantum chemistry methods ,0103 physical sciences ,Thermal ,Phase diagrams ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,Thermoelasticity - Abstract
International audience; We present an ab initio study of MgO at high temperature and pressure, around the phase transition between the B1 and B2 phases. By means of ab initio molecular dynamic calculations, the thermal evolution of vibrational properties and thermodynamic quantities are obtained. We carefully compare our results with previous theoretical works on the phase transition curve and we analyse the differences among them. We show that anharmonic effects have been underestimated in the quasiharmonic approximation and that their inclusion in the free energy strongly straighten up the transition curve. Then we use our B1-B2 phase boundary and our calculated Hugoniot to analyze recent decaying shock experiments on MgO. We also provide important thermodynamic quantities as the Grüneisen parameter and sound velocities and we discussed their temperature dependence.
- Published
- 2019
9. Laser-driven shock compression of 'synthetic planetary mixtures' of water, ethanol, and ammonia
- Author
-
Ryosuke Kodama, Alessandra Ravasio, J.-A. Hernandez, Norimasa Ozaki, Kohei Miyanishi, M. Koenig, Alessandra Benuzzi-Mounaix, Martin French, Takayoshi Sano, Erik Brambrink, Yasunori Fujimoto, R. Bolis, Yuhei Umeda, F. Lefevre, Mandy Bethkenhagen, Takuo Okuchi, P. Barroso, Tommaso Vinci, Ronald Redmer, M. Guarguaglini, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Paris (IP Paris), Okayama University, Observatoire de Paris, Université Paris sciences et lettres (PSL), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Universität Rostock, Institut für Physik [Rostock], Osaka University [Osaka], ANR POMPEI (Grant No. ANR-16-CE31-0008), and ANR-16-CE31-0008,POMPEI,Propriétés de Mélanges de H2ONH3CH4 d'interet pour les intérieurs planétaires et les exoplanètes.(2016)
- Subjects
0301 basic medicine ,Materials science ,Thermodynamic state ,Chemical physics ,Science ,Article ,03 medical and health sciences ,0302 clinical medicine ,Neptune ,Planet ,Giant planets ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Adiabatic process ,Multidisciplinary ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Exoplanets ,Uranus ,Laser-produced plasmas ,Computational physics ,Shock (mechanics) ,Boundary layer ,030104 developmental biology ,13. Climate action ,Medicine ,Astrophysics::Earth and Planetary Astrophysics ,030217 neurology & neurosurgery ,Ice giant - Abstract
Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia “synthetic planetary mixture” (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000–4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000–14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.
- Published
- 2019
10. Decaying shock studies of phase transitions in MgO-SiO2 systems: Implications for the super-Earths' interiors
- Author
-
Toshimori Sekine, Guillaume Morard, Alessandra Benuzzi-Mounaix, Yoichi Sakawa, F. Remus, Norimasa Ozaki, J. Bouchet, Tommaso Vinci, M. Guarguaglini, M. Koenig, E. Bambrink, R. Kodama, R. Bolis, François Guyot, Alessandra Ravasio, K. Miyanishi, R. Musella, and Tomokazu Sano
- Subjects
Phase transition ,Materials science ,010504 meteorology & atmospheric sciences ,Shock (fluid dynamics) ,Analytical chemistry ,Forsterite ,engineering.material ,Laser ,01 natural sciences ,law.invention ,Geophysics ,law ,Phase (matter) ,0103 physical sciences ,engineering ,Enstatite ,General Earth and Planetary Sciences ,Periclase ,010306 general physics ,0105 earth and related environmental sciences ,Phase diagram - Abstract
We report an experimental study of the phase diagrams of periclase (MgO), enstatite (MgSiO3) and forsterite (Mg2SiO4) at high pressures. We investigated with laser driven decaying shocks the pressure/temperature curves of MgO, MgSiO3 and Mg2SiO4 between 0.2-1.2 TPa, 0.12-0.5 TPa and 0.2-0.85 TPa respectively. A melting signature has been observed in MgO at 0.47 TPa and 9860 K, while no phase changes were observed neither in MgSiO3 nor in Mg2SiO4. An increasing of reflectivity of MgO, MgSiO3 and Mg2SiO4 liquids have been detected at 0.55 TPa -12 760 K, 0.15 TPa 7540 K, 0.2 TPa 5800 K, respectively. In contrast to SiO2, melting and metallization of these compounds do not coincide implying the presence of poor electrically conducting liquids close to the melting lines. This has important implications for the generation of dynamos in Super-earths mantles.
- Published
- 2016
11. Dissociation along the principal Hugoniot of the Laser Mégajoule ablator material
- Author
-
R. Bolis, V. Recoules, Thomas Plisson, G. Huser, G. Salin, E. Brambrink, P. Colin-Lalu, and Tommaso Vinci
- Subjects
Glow discharge ,Materials science ,Warm dense matter ,Laser ,01 natural sciences ,Dissociation (chemistry) ,010305 fluids & plasmas ,ABINIT ,law.invention ,law ,0103 physical sciences ,Atomic physics ,010306 general physics ,National Ignition Facility ,Inertial confinement fusion ,Laser Mégajoule - Abstract
Glow discharge polymer hydrocarbon (GDP-CH) is used as the ablator material in inertial confinement fusion (ICF) capsules for the Laser Megajoule and National Ignition Facility. Due to its fabrication process, GDP-CH chemical composition and structure differ from commercially available plastics and detailed knowledge of its properties in the warm dense matter regime is needed to achieve accurate design of ICF capsules. First-principles ab initio simulations of the GDP-CH principal Hugoniot up to 8 Mbar were performed using the quantum molecular dynamics (QMD) code abinit and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are used to parametrize a quantum semiempirical model in order to generate a tabulated equation of state that includes dissociation. Hugoniot measurements obtained from an experiment conducted at the LULI2000 laser facility confirm QMD simulations as well as EOS modeling. We conclude by showing the EOS model influence on shock timing in a hydrodynamic simulation.
- Published
- 2016
12. Nanosecond Imaging of Shock- and Jet-Like Features
- Author
-
J. E. Cross, Jena Meinecke, Hamad Ahmed, Brian Reville, Marco Borghesi, R. Bolis, R. A. B. Alraddadi, Nigel Woolsey, R. Crowston, D. Q. Lamb, Petros Tzeferacos, Eleanor Tubman, Hugo Doyle, Gianluca Gregori, and Domenico Doria
- Subjects
shock waves ,Physics ,Shock wave ,Nuclear and High Energy Physics ,Jet (fluid) ,plasma diagnostics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Plasma ,Nanosecond ,plasmas ,Condensed Matter Physics ,Collimated light ,Shock (mechanics) ,Optics ,Physics::Plasma Physics ,Plasma diagnostics ,Atomic physics ,business ,Ultrashort pulse ,Laser beams - Abstract
The production of shock- and collimated jet-like features is recorded from the self-emission of a plasma using a 16- frame camera, which can show the progression of the interaction over short (100s ns) durations. A cluster of laser beams, with intensity 1015 W/cm2, was focused onto a planar aluminum foil to produce a plasma that expanded into 0.7 mbar of argon gas. The acquisition of 16 ultrafast images on a single shot allows prompt spatial and temporal characterization of the plasma and enables the velocity of the jet- and shock-like features to be calculated.
- Published
- 2014
13. Laparoscopic approach of large ovarian cysts
- Author
-
Uccella, Stefano, Ghezzi, Fabio, Cromi, Antonella, Zanfr, M, Zefiro, Francesca, and Laterza, R. BOLIS P.
- Published
- 2006
14. Quantifying bone healing after mandibular displacement in orthognathic surgery.
- Author
-
Voss JO, Bolis R, Koerdt S, Doll C, Rubarth K, Duda GN, Heiland M, Fischer H, Rendenbach C, Ebker T, and Steffen C
- Subjects
- Male, Humans, Female, Adult, Osteotomy, Sagittal Split Ramus adverse effects, Osteotomy, Sagittal Split Ramus methods, Retrospective Studies, Cone-Beam Computed Tomography methods, Mandible diagnostic imaging, Mandible surgery, Orthognathic Surgery
- Abstract
Impaired bony healing following bilateral sagittal split osteotomy (BSSO) is a major unmet medical need for affected patients, and rare occurrences can hinder the identification of underlying risk factors. We hypothesised that osseous union following BSSO can be quantified using volumetric analysis, and we aimed to identify the risk factors for impaired bone healing. The percentage change in bony volume was measured in orthognathic patients following BSSO using two consecutive postoperative cone-beam computed tomography scans. Patients' characteristics and treatment parameters were documented, and correlation and regression analyses of these variables performed. Thirty-six patients (23 men and 13 women) with a mean (SD) age of 33.28 (11.86) years were included. The gap site (lingual versus buccal) (p < 0.01) had a significant impact on the change in volume. Age (p = 0.06) showed a trend towards significance. Initial width of the osteotomy gap, sex, and indication for surgery did not influence osseous healing. Increased age at surgery and the side of the buccal osteotomy are independent risk factors for impaired osseous healing following BSSO., (Copyright © 2023 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Electrical conductivity of warm dense silica from double-shock experiments.
- Author
-
Guarguaglini M, Soubiran F, Hernandez JA, Benuzzi-Mounaix A, Bolis R, Brambrink E, Vinci T, and Ravasio A
- Abstract
Understanding materials behaviour under extreme thermodynamic conditions is fundamental in many branches of science, including High-Energy-Density physics, fusion research, material and planetary science. Silica (SiO
2 ) is of primary importance as a key component of rocky planets' mantles. Dynamic compression is the most promising approach to explore molten silicates under extreme conditions. Although most experimental studies are restricted to the Hugoniot curve, a wider range of conditions must be reached to distill temperature and pressure effects. Here we present direct measurements of equation of state and two-colour reflectivity of double-shocked α-quartz on a large ensemble of thermodynamic conditions, which were until now unexplored. Combining experimental reflectivity data with numerical simulations we determine the electrical conductivity. The latter is almost constant with pressure while highly dependent on temperature, which is consistent with simulations results. Based on our findings, we conclude that dynamo processes are likely in Super-Earths' mantles.- Published
- 2021
- Full Text
- View/download PDF
16. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures.
- Author
-
Morard G, Hernandez JA, Guarguaglini M, Bolis R, Benuzzi-Mounaix A, Vinci T, Fiquet G, Baron MA, Shim SH, Ko B, Gleason AE, Mao WL, Alonso-Mori R, Lee HJ, Nagler B, Galtier E, Sokaras D, Glenzer SH, Andrault D, Garbarino G, Mezouar M, Schuster AK, and Ravasio A
- Abstract
Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO
3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures., Competing Interests: The authors declare no competing interest.- Published
- 2020
- Full Text
- View/download PDF
17. Laser-driven shock compression of "synthetic planetary mixtures" of water, ethanol, and ammonia.
- Author
-
Guarguaglini M, Hernandez JA, Okuchi T, Barroso P, Benuzzi-Mounaix A, Bethkenhagen M, Bolis R, Brambrink E, French M, Fujimoto Y, Kodama R, Koenig M, Lefevre F, Miyanishi K, Ozaki N, Redmer R, Sano T, Umeda Y, Vinci T, and Ravasio A
- Abstract
Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets' internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia "synthetic planetary mixture" (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000-4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000-14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.
- Published
- 2019
- Full Text
- View/download PDF
18. Dissociation along the principal Hugoniot of the Laser Mégajoule ablator material.
- Author
-
Colin-Lalu P, Recoules V, Salin G, Plisson T, Brambrink E, Vinci T, Bolis R, and Huser G
- Abstract
Glow discharge polymer hydrocarbon (GDP-CH) is used as the ablator material in inertial confinement fusion (ICF) capsules for the Laser Mégajoule and National Ignition Facility. Due to its fabrication process, GDP-CH chemical composition and structure differ from commercially available plastics and detailed knowledge of its properties in the warm dense matter regime is needed to achieve accurate design of ICF capsules. First-principles ab initio simulations of the GDP-CH principal Hugoniot up to 8 Mbar were performed using the quantum molecular dynamics (QMD) code abinit and showed that atomic bond dissociation has an effect on the compressibility. Results from these simulations are used to parametrize a quantum semiempirical model in order to generate a tabulated equation of state that includes dissociation. Hugoniot measurements obtained from an experiment conducted at the LULI2000 laser facility confirm QMD simulations as well as EOS modeling. We conclude by showing the EOS model influence on shock timing in a hydrodynamic simulation.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.