Back to Search Start Over

Laser-driven shock compression of 'synthetic planetary mixtures' of water, ethanol, and ammonia

Authors :
Ryosuke Kodama
Alessandra Ravasio
J.-A. Hernandez
Norimasa Ozaki
Kohei Miyanishi
M. Koenig
Alessandra Benuzzi-Mounaix
Martin French
Takayoshi Sano
Erik Brambrink
Yasunori Fujimoto
R. Bolis
Yuhei Umeda
F. Lefevre
Mandy Bethkenhagen
Takuo Okuchi
P. Barroso
Tommaso Vinci
Ronald Redmer
M. Guarguaglini
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut Polytechnique de Paris (IP Paris)
Okayama University
Observatoire de Paris
Université Paris sciences et lettres (PSL)
Galaxies, Etoiles, Physique, Instrumentation (GEPI)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Universität Rostock
Institut für Physik [Rostock]
Osaka University [Osaka]
ANR POMPEI (Grant No. ANR-16-CE31-0008)
ANR-16-CE31-0008,POMPEI,Propriétés de Mélanges de H2ONH3CH4 d'interet pour les intérieurs planétaires et les exoplanètes.(2016)
Source :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2019, 9, pp.10155. ⟨10.1038/s41598-019-46561-6⟩, Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019), Scientific Reports, 2019, 9, pp.10155. ⟨10.1038/s41598-019-46561-6⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia “synthetic planetary mixture” (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000–4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000–14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.

Details

Language :
English
ISSN :
20452322
Database :
OpenAIRE
Journal :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2019, 9, pp.10155. ⟨10.1038/s41598-019-46561-6⟩, Scientific Reports, Vol 9, Iss 1, Pp 1-9 (2019), Scientific Reports, 2019, 9, pp.10155. ⟨10.1038/s41598-019-46561-6⟩
Accession number :
edsair.doi.dedup.....fd84518ee9c719266a9dd3ca88700323