1. Learning leaves a memory trace in motor cortex.
- Author
-
Losey DM, Hennig JA, Oby ER, Golub MD, Sadtler PT, Quick KM, Ryu SI, Tyler-Kabara EC, Batista AP, Yu BM, and Chase SM
- Subjects
- Learning, Brain, Brain Mapping, Electroencephalography, Motor Cortex, Brain-Computer Interfaces
- Abstract
How are we able to learn new behaviors without disrupting previously learned ones? To understand how the brain achieves this, we used a brain-computer interface (BCI) learning paradigm, which enables us to detect the presence of a memory of one behavior while performing another. We found that learning to use a new BCI map altered the neural activity that monkeys produced when they returned to using a familiar BCI map in a way that was specific to the learning experience. That is, learning left a "memory trace" in the primary motor cortex. This memory trace coexisted with proficient performance under the familiar map, primarily by altering neural activity in dimensions that did not impact behavior. Forming memory traces might be how the brain is able to provide for the joint learning of multiple behaviors without interference., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF