Back to Search Start Over

Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics.

Authors :
Quick KM
Card NS
Whaite SM
Mischel J
Loughlin P
Batista AP
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2014; Vol. 2014, pp. 2589-92.
Publication Year :
2014

Abstract

Brain computer interface (BCI) control predominately uses visual feedback. Real arm movements, however, are controlled under a diversity of feedback mechanisms. The lack of additional BCI feedback modalities forces users to maintain visual contact while performing tasks. Such stringent requirements result in poor BCI control during tasks that inherently lack visual feedback, such as grasping, or when visual attention is diverted. Using a modified version of the Critical Tracking Task which we call the Critical Stability Task (CST), we tested the ability of 9 human subjects to control an unstable system using either free arm movements or pinch force. The subjects were provided either visual feedback, 'proportional' vibrotactile feedback, or 'on-off' vibrotactile feedback about the state of the unstable system. We increased the difficulty of the control task by making the virtual system more unstable. We judged the effectiveness of a particular form of feedback as the maximal instability the system could reach before the subject lost control of it. We found three main results. First, subjects can use solely vibrotactile feedback to control an unstable system, although control was better using visual feedback. Second, 'proportional' vibrotactile feedback provided slightly better control than 'on-off' vibrotactile feedback. Third, there was large intra-subject variability in terms of the most effective input and feedback methods. This highlights the need to tailor the input and feedback methods to the subject when a high degree of control is desired. Our new task can provide a complement to traditional center-out paradigms to help boost the real-world relevance of BCI research in the lab.

Details

Language :
English
ISSN :
2694-0604
Volume :
2014
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
25570520
Full Text :
https://doi.org/10.1109/EMBC.2014.6944152