24 results on '"Prunier-Leterme, N."'
Search Results
2. Identification des déterminants génétiques impliqués dans les défenses du pois contre le puceron Acyrthosiphon pisum
- Author
-
Rémi Ollivier, Glory, I., Le Gallic, J. F., Denis, G., Morliere, S., Miteul, H., Buchard, C., Duval F, Hudaverdian, S., Mahéo, F., Prunier-Leterme, N., Tanguy, S., Cloteau, R., Toussaint, G., Jean-Philippe Rivière, Angélique Lesné, Leveugle, M., J-P, Pichon, Duborjal, H., Klein, A., Aubert, G., Kreplak, J., Judith Burstin, Jean-Christophe Simon, M-L, Pilet-Nayel, Sugio, A., EL Mjiyad, Noureddine, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Biogemma, 63720, Chappes, France, Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,GWAS ,interaction hôte/non-hôte ,résistance génétique ,biotype ,Pisum sativum - Abstract
National audience; Le pois (Pisum sativum) constitue une culture d’importance majeure parmi les légumineuses pour ses qualités de plante protéagineuse, notamment en Europe en réduisant la part de protéines végétales importées ainsi que pour son rôle dans la rotation des cultures en fixant l’azote atmosphérique dans le sol. Cependant, ces dernières années, les rendements ont été rendus instables dus aux contraintes biotiques et abiotiques. Pour lutter contre certains ravageurs, les producteurs ont recours à de grandes quantités de pesticides qui sont coûteuses et dangereuses pour l’environnement et la santé humaine. Pour ces raisons, des alternatives sont mises en œuvre tels que le développement de stratégies d’utilisation et de gestion des résistances génétiques. Le puceron vert du pois (Acyrthosiphon pisum) est un ravageur important des cultures de légumineuses et créée des dommages directement en se nourrissant de la sève phloémienne au cours des périodes d’infestations et indirectement en étant vecteur de virus pathogènes. Cette espèce de puceron forme un complexe d'au moins 15 biotypes, chacun est adapté pour se nourrir sur une ou quelques espèces de légumineuses et révèle des performances réduites sur d'autres espèces. Nos travaux de recherche portent sur la compréhension des mécanismes génétiques et moléculaires des interactions plante-puceron conduisant à la résistance hôte et non-hôte des légumineuses face à A. pisum. Un phénotypage par test de fécondité de puceron sur plante a été réalisé pour déterminer les profils de résistance de 240 génotypes de pois face à deux biotypes d’A. pisum, l’un adapté et l’autre non-adapté au pois. Aucune résistante complète au biotype adapté d’A. pisum n’a été observée dans les accessions de pois , alors que de nombreuses accessions ont montré une résistance complète au biotype non-adapté. De plus, de grandes variations de niveaux de résistance quantitative ont été observées parmi les génotypes de pois face aux deux biotypes d'A. pisum. A partir de données de séquençage exome capture obtenues sur les 240 génotypes dans le cadre du projet PeaMUST, une approche de génétique d’association sur le génome entier (GWAS), a été réalisée afin d’identifier les déterminants génétiques de la résistance du pois aux deux biotypes d’A. pisum. Les résultats ont permis de mettre en évidence des loci significativement associés à la résistance du pois sur le chromosome 7, incluant des loci spécifiques de chacun des deux biotypes d’A. pisum, dont l’un présentant un effet majeur, et deux loci communs aux deux biotypes. Une analyse d’haplotypes dans les intervalles sous-jacents à ces loci a confirmé des différences significatives de phénotypes entre groupes de lignées partageant les mêmes haplotypes. Cette approche a permis d’identifier une liste de génotypes de pois dont les comportements de résistance seront confirmés au champ. Elle a permis d’identifier des loci et gènes candidats sous-jacents à valider expérimentalement pour leur implication dans la compatibilité et incompatibilité du pois aux différents biotypes d’A. pisum.
- Published
- 2021
3. Seasonal photoperiodism regulates the expression of cuticular and signalling protein genes in the pea aphid
- Author
-
Le Trionnaire, G., Jaubert, S., Sabater-Muñoz, B., Benedetto, A., Bonhomme, J., Prunier-Leterme, N., Martinez-Torres, D., Simon, J.-C., and Tagu, D.
- Published
- 2007
- Full Text
- View/download PDF
4. Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae
- Author
-
Figueroa, C.C., Simon, J.-C., Prunier-Leterme, N., Gallic, J.-F Le, Briones, L.M., Dedryver, C.-A., and Niemeyer, H.M.
- Subjects
DNA -- Research ,Biological diversity -- Research ,Lice -- Genetic aspects ,Genetic research ,Biological sciences - Abstract
The genetic diversity of Sitobion avenae in Chile with microsatellites, considering the impact of reproductive mode, interaction with host plants and introduction on aphid population structure is examined. The identity of the genotypes found in Chile is compared with that of clones that were monitored in earlier surveys of Sitobion avenae populations in Western Europe.
- Published
- 2005
5. Annotated expressed sequence tags for studies of the regulation of reproductive modes in aphids
- Author
-
Tagu, D, Prunier-Leterme, N, Legeai, F, Gauthier, J.-P, Duclert, A, Sabater-Muñoz, B, Bonhomme, J, and Simon, J.-C
- Published
- 2004
- Full Text
- View/download PDF
6. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid
- Author
-
Gauthier J-P, Haubruge E, De Pauw E, Bonhomme J, Jaubert-Possamai S, Francis F, Le Trionnaire G, Legeai F, Prunier-Leterme N, Simon J-C, Tanguy S, and Tagu D
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.
- Published
- 2009
- Full Text
- View/download PDF
7. Disentangling the causes for faster-X evolution in aphids
- Author
-
Jaquiéry, J, primary, Peccoud, J, additional, Ouisse, T, additional, Legeai, F, additional, Prunier-Leterme, N, additional, Gouin, A, additional, Nouhaud, P, additional, Brisson, JA, additional, Bickel, R, additional, Purandare, S, additional, Poulain, J, additional, Battail, C, additional, Lemaitre, C, additional, Mieuzet, L, additional, Le Trionnaire, G, additional, Simon, JC, additional, and Rispe, C, additional
- Published
- 2017
- Full Text
- View/download PDF
8. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)
- Author
-
Sabater-Muñoz, B, Legeai, F, Rispe, C, Bonhomme, J, Dearden, P, Dossat, C, Duclert, A, Gauthier, J, Giblot Ducray, D, Hunter, W, Dang, P, Kambhampati, S, Martínez-Torres, D, Cortés, T, Moya, A, Nakabachi, A, Philippe, C, Prunier-Leterme, N, Rahbé, Y, Simon, J, Stern, D, Wincker, P, Tagu, D, Biologie des organismes et des populations appliquées à la protection des plantes (BIO3P), Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Unité de Recherche Génomique Info (URGI), Institut National de la Recherche Agronomique (INRA), Biochemistry Department, University of Otago [Dunedin, Nouvelle-Zélande], Génomique métabolique (UMR 8030), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Horticultural Research Laboratory, Agricultural Research Service, U.S. Horticultural Research Laboratory ( Fort Pierce, USA), United States Department of Agriculture - USDA (USA), Department of Entomology, Kansas State University, Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València (UV), Environmental Molecular Biology Laboratory (RIKEN), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Biologie Fonctionnelle, Insectes et Interactions (BF2I), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), AGROCAMPUS OUEST [Le Rheu], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Department of Ecology and Evolutionary Biology [Princeton], Princeton University, Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, USDA-ARS : Agricultural Research Service, United States Department of Agriculture (USDA), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université d'Évry-Val-d'Essonne (UEVE), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon
- Subjects
Aphid Species ,DNA, Complementary ,Transcription, Genetic ,Method ,acyrthosiphon pisum ,Additional Data File ,séquençage ,Animals ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Phylogeny ,Codon Position ,Gene Library ,Plant Diseases ,Expressed Sequence Tags ,Population Density ,Base Composition ,Base Sequence ,gène ,fungi ,Peas ,food and beverages ,DNA ,biochemical phenomena, metabolism, and nutrition ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Gene Ontology ,cDNA Library ,puceron ,Aphids ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Microsatellite Repeats - Abstract
A large-scale sequencing analysis of the Hemiptera Acyrthosiphon pisumexpressed sequence tags corresponding to about 12,000 unique transcripts is described, along with an in silico profiling analysis that identifies 135 aphid tissue-specific transcripts., Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.
- Published
- 2006
- Full Text
- View/download PDF
9. Cross-species amplification of microsatellite loci in aphids: assessment and application
- Author
-
Wilson, A. C. C., Massonnet, B., Simon, J-C., Prunier-Leterme, N., Dolatti, L., Llewellyn, K. S., Figueroa, C. C., Ramirez, C. C., Blackman, R. L., Estoup, A., and Sunnucks, P.
- Subjects
Biochemistry & Molecular Biology ,Evolutionary Biology ,Ecology - Abstract
Despite the relative ease of isolating microsatellites, their development still requires substantial inputs of time, money and expertise. For this reason there is considerable interest in using existing microsatellites on species from which markers were not cloned. We tested cross-species amplification of 48 existing aphid loci in species of the following genera: Aphidinae: Aphidini: Aphis and Rhopalosiphum; Aphidinae: Macrosiphini: Acyrthosiphum, Brevicoryne, Diuraphis, Illinoia, Macrosiphoniella, Macrosiphum, Metopeurum, Metapolophium, Myzus, Phorodon, Sitobion and Uroleucon and Neuquenaphidinae: Neuquenaphis. Our results show cross-species application of known microsatellite loci is a highly promising source of codominant markers for population genetic and evolutionary studies in aphids.
- Published
- 2004
10. Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum
- Author
-
Huybrechts, J., primary, Bonhomme, J., additional, Minoli, S., additional, Prunier-Leterme, N., additional, Dombrovsky, A., additional, Abdel-Latief, M., additional, Robichon, A., additional, Veenstra, J. A., additional, and Tagu, D., additional
- Published
- 2010
- Full Text
- View/download PDF
11. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid
- Author
-
Le Trionnaire, G, primary, Francis, F, additional, Jaubert-Possamai, S, additional, Bonhomme, J, additional, De Pauw, E, additional, Gauthier, J-P, additional, Haubruge, E, additional, Legeai, F, additional, Prunier-Leterme, N, additional, Simon, J-C, additional, Tanguy, S, additional, and Tagu, D, additional
- Published
- 2009
- Full Text
- View/download PDF
12. Annotated expressed sequence tags and xenobiotic detoxification in the aphid Myzus persicae (Sulzer)
- Author
-
FIGUEROA, C.C., primary, PRUNIER-LETERME, N., additional, RISPE, C., additional, SEPÚLVEDA, F., additional, FUENTES-CONTRERAS, E., additional, SABATER-MUÑOZ, B., additional, SIMON, J.-C., additional, and TAGU, D., additional
- Published
- 2007
- Full Text
- View/download PDF
13. Admixed sexual and facultatively asexual aphid lineages at mating sites
- Author
-
HALKETT, F., primary, PLANTEGENEST, M., additional, PRUNIER-LETERME, N., additional, MIEUZET, L., additional, DELMOTTE, F., additional, and SIMON, J. C., additional
- Published
- 2004
- Full Text
- View/download PDF
14. Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts
- Author
-
Simon, J.-C., primary, Carré, S., additional, Boutin, M., additional, Prunier–Leterme, N., additional, Sabater–Muñoz, B., additional, Latorre, A., additional, and Bournoville, R., additional
- Published
- 2003
- Full Text
- View/download PDF
15. Admixed sexual and facultatively asexual aphid lineages at mating sites.
- Author
-
Halkett, F., Plantegenest, M., Prunier-Leterme, N., Mieuzet, L., Delmotte, F., and Simon, J. C.
- Subjects
GENETIC polymorphisms ,APHIDS ,SEX (Biology) ,ECOLOGY ,ENVIRONMENTAL sciences ,ENVIRONMENTAL policy - Abstract
Cyclically parthenogenetic organisms may have facultative asexual counterparts. Such organisms, including aphids, are therefore interesting models for the study of ecological and genetic interactions between lineages differing in reproductive mode. Earlier studies on aphids have revealed major differences in the genetic outcomes of populations that are possibly resulting mostly either from sexual or from asexual reproduction. Besides, notable gene flow between sexual and asexual derivatives has been suspected, which could lead to the emergence of new asexual lineages. The present study examines the interplay between these lineages and is based on analyses of population structure of individuals that may contribute to the pool of sexual reproductive forms in the host alternating aphidRhopalosiphum padi. Using a Bayesian assignment method, we first show that the sexual forms ofR. padion mating sites encompass two genetically distinct clusters of individuals in the western part of France. The first cluster included unique genotypes of sexual lineages, while the second cluster included facultatively asexual lineages in numerous copies, the reproductive mode of the two clusters being confirmed by reference clones. Sexual reproductive forms produced by sexual and facultatively asexual lineages are thus admixed at mating sites which gives a large opportunity for the two clusters to mate with each other. Nevertheless, this study also highlights, as previously demonstrated, that the two clusters retained high genetic differentiation. Possible explanations for the inferred limited genetic exchanges are advanced in the discussion, but further dedicated investigations are required to solve this paradox. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
16. Disentangling the Causes for Faster-X Evolution in Aphids.
- Author
-
Jaquiéry J, Peccoud J, Ouisse T, Legeai F, Prunier-Leterme N, Gouin A, Nouhaud P, Brisson JA, Bickel R, Purandare S, Poulain J, Battail C, Lemaitre C, Mieuzet L, Le Trionnaire G, Simon JC, and Rispe C
- Subjects
- Animals, Aphids physiology, Biological Evolution, Female, Gene Expression Profiling, Genes, X-Linked, Genetic Drift, Genome, Insect, Male, Polymorphism, Genetic, Reproduction, Reproduction, Asexual, Sex Chromosomes genetics, Aphids genetics, Chromosomes, Insect, Evolution, Molecular, X Chromosome genetics
- Abstract
The faster evolution of X chromosomes has been documented in several species, and results from the increased efficiency of selection on recessive alleles in hemizygous males and/or from increased drift due to the smaller effective population size of X chromosomes. Aphids are excellent models for evaluating the importance of selection in faster-X evolution because their peculiar life cycle and unusual inheritance of sex chromosomes should generally lead to equivalent effective population sizes for X and autosomes. Because we lack a high-density genetic map for the pea aphid, whose complete genome has been sequenced, we first assigned its entire genome to the X or autosomes based on ratios of sequencing depth in males (X0) to females (XX). Then, we computed nonsynonymous to synonymous substitutions ratios (dN/dS) for the pea aphid gene set and found faster evolution of X-linked genes. Our analyses of substitution rates, together with polymorphism and expression data, showed that relaxed selection is likely to be the greatest contributor to faster-X because a large fraction of X-linked genes are expressed at low rates and thus escape selection. Yet, a minor role for positive selection is also suggested by the difference between substitution rates for X and autosomes for male-biased genes (but not for asexual female-biased genes) and by lower Tajima's D for X-linked compared with autosomal genes with highly male-biased expression patterns. This study highlights the relevance of organisms displaying alternative chromosomal inheritance to the understanding of forces shaping genome evolution., (© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2018
- Full Text
- View/download PDF
17. Dosage compensation and sex-specific epigenetic landscape of the X chromosome in the pea aphid.
- Author
-
Richard G, Legeai F, Prunier-Leterme N, Bretaudeau A, Tagu D, Jaquiéry J, and Le Trionnaire G
- Subjects
- Animals, Chromatin genetics, Chromosomes, Insect genetics, Epigenesis, Genetic, Female, Genes, X-Linked, Male, Aphids genetics, Dosage Compensation, Genetic, Evolution, Molecular, X Chromosome genetics
- Abstract
Background: Heterogametic species display a differential number of sex chromosomes resulting in imbalanced transcription levels for these chromosomes between males and females. To correct this disequilibrium, dosage compensation mechanisms involving gene expression and chromatin accessibility regulations have emerged throughout evolution. In insects, these mechanisms have been extensively characterized only in Drosophila but not in insects of agronomical importance. Aphids are indeed major pests of a wide range of crops. Their remarkable ability to switch from asexual to sexual reproduction during their life cycle largely explains the economic losses they can cause. As heterogametic insects, male aphids are X0, while females (asexual and sexual) are XX., Results: Here, we analyzed transcriptomic and open chromatin data obtained from whole male and female individuals to evaluate the putative existence of a dosage compensation mechanism involving differential chromatin accessibility of the pea aphid's X chromosome. Transcriptomic analyses first showed X/AA and XX/AA expression ratios for expressed genes close to 1 in males and females, respectively, suggesting dosage compensation in the pea aphid. Analyses of open chromatin data obtained by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq) revealed a X chromosome chromatin accessibility globally and significantly higher in males than in females, while autosomes' chromatin accessibility is similar between sexes. Moreover, chromatin environment of X-linked genes displaying similar expression levels in males and females-and thus likely to be compensated-is significantly more accessible in males., Conclusions: Our results suggest the existence of an underlying epigenetic mechanism enhancing the X chromosome chromatin accessibility in males to allow X-linked gene dose correction between sexes in the pea aphid, similar to Drosophila. Our study gives new evidence into the comprehension of dosage compensation in link with chromatin biology in insects and newly in a major crop pest, taking benefits from both transcriptomic and open chromatin data.
- Published
- 2017
- Full Text
- View/download PDF
18. Genetic control of contagious asexuality in the pea aphid.
- Author
-
Jaquiéry J, Stoeckel S, Larose C, Nouhaud P, Rispe C, Mieuzet L, Bonhomme J, Mahéo F, Legeai F, Gauthier JP, Prunier-Leterme N, Tagu D, and Simon JC
- Subjects
- Animals, Aphids physiology, Chromosome Mapping, Crosses, Genetic, Female, Genetics, Population, Male, Parthenogenesis genetics, Quantitative Trait Loci, Reproduction genetics, Aphids genetics, Gene Transfer, Horizontal, Pisum sativum parasitology, Reproduction, Asexual genetics
- Abstract
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼ 300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.
- Published
- 2014
- Full Text
- View/download PDF
19. Masculinization of the x chromosome in the pea aphid.
- Author
-
Jaquiéry J, Rispe C, Roze D, Legeai F, Le Trionnaire G, Stoeckel S, Mieuzet L, Da Silva C, Poulain J, Prunier-Leterme N, Ségurens B, Tagu D, and Simon JC
- Subjects
- Alleles, Animals, Aphids physiology, Female, Genome, Insect, Male, Mutation, Reproduction, Asexual genetics, Aphids genetics, Biological Evolution, Sex Chromosomes, X Chromosome genetics
- Abstract
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2013
- Full Text
- View/download PDF
20. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera).
- Author
-
Sabater-Muñoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier JP, Ducray DG, Hunter W, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbé Y, Simon JC, Stern DL, Wincker P, and Tagu D
- Subjects
- Animals, Aphids classification, Aphids pathogenicity, Base Composition, Base Sequence, DNA chemistry, DNA genetics, DNA, Complementary genetics, Expressed Sequence Tags, Gene Library, Microsatellite Repeats, Pisum sativum parasitology, Phylogeny, Plant Diseases parasitology, Population Density, Aphids genetics, Transcription, Genetic
- Abstract
Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.
- Published
- 2006
- Full Text
- View/download PDF
21. Strong biases in the transmission of sex chromosomes in the aphid Rhopalosiphum padi.
- Author
-
Frantz A, Plantegenest M, Bonhomme J, Prunier-Leterme N, and Simon JC
- Subjects
- Animals, Crosses, Genetic, Female, Male, Reproduction, Asexual, Aphids genetics, Sex Chromosomes
- Abstract
The typical life cycle of aphids involves several parthenogenetic generations followed by a single sexual one in autumn, i.e. cyclical parthenogenesis. Sexual females are genetically identical to their parthenogenetic mothers and carry two sex chromosomes (XX). Male production involves the elimination of one sex chromosome (to produce X0) that could give rise to genetic conflicts between X-chromosomes. In addition, deleterious recessive mutations could accumulate on sex chromosomes during the parthenogenetic phase and affect males differentially depending on the X-chromosome they inherit. Genetic conflicts and deleterious mutations thus may induce transmission bias that could be exaggerated in males. Here, the transmission of X-chromosomes has been studied in the laboratory in two cyclically parthenogenetic lineages of the bird cherry-oat aphid Rhopalosiphum padi . X-chromosome transmission was followed, using X-linked microsatellite loci, at male production in the two lineages and in their hybrids deriving from reciprocal crosses. Genetic analyses revealed non-Mendelian inheritance of X-chromosomes in both parental and hybrid lineages at different steps of male function. Putative mechanisms and evolutionary consequences of non-Mendelian transmission of X-chromosomes to males are discussed.
- Published
- 2005
- Full Text
- View/download PDF
22. Effect of host defense chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae.
- Author
-
Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, and Niemeyer HM
- Subjects
- Animals, Aphids genetics, Defense Mechanisms, Genetic Variation, Genotype, Host-Parasite Interactions physiology, Microsatellite Repeats, Polymerase Chain Reaction, Species Specificity, Aphids physiology, Clone Cells physiology, Host-Parasite Interactions genetics
- Abstract
Five microsatellite loci were used to study the genetic variability and population structure of Sitobion avenae (Hemiptera: Aphididae) on some of its host plants. Individuals were collected in Chile from different cultivated and wild Poaceae. Forty-four multilocus genotypes were found among the 1052 aphids analyzed, of which four represented nearly 90% of the sample. No specialist genotypes were found, although some preferred hosts endowed with chemical defenses, i.e., hydroxamic acids (Hx), while others preferred comparatively undefended hosts. Performances of some predominant and some rare genotypes were evaluated on plants differing in their Hx levels. Significant differences in performance were found among clones, the two most common genotypes showing no differences in performance among all hosts tested, and the rare genotypes showing enhanced performance on the host with highest Hx level. A hypothesis is proposed whereby the appearance of rarer genotypes is in part related to the presence of Hx.
- Published
- 2004
- Full Text
- View/download PDF
23. Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts.
- Author
-
Simon JC, Carré S, Boutin M, Prunier-Leterme N, Sabater-Mun B, Latorre A, and Bournoville R
- Subjects
- Adaptation, Biological, Animals, DNA Primers, Ecosystem, Fabaceae, France, Selection, Genetic, Sequence Analysis, DNA, Aphids genetics, Buchnera genetics, Gene Frequency genetics, Microsatellite Repeats genetics, Phylogeny, Symbiosis genetics
- Abstract
In North America, the pea aphid Acyrthosiphon pisum encompasses ecologically and genetically distinct host races that offer an ideal biological system for studies on sympatric speciation. In addition to its obligate symbiont Buchnera, pea aphids harbour several facultative and phylogenetically distant symbionts. We explored the relationships between host races of A. pisum and their symbiotic microbiota to gain insights into the historical process of ecological specialization and symbiotic acquisition in this aphid. We used allozyme and microsatellite markers to analyse the extent of genetic differentiation between populations of A. pisum on pea, alfalfa and clover in France. In parallel, we examined: (i) the distribution of four facultative symbionts; and (ii) the genetic variation in the Buchnera genome across host-associated populations of A. pisum. Our study clearly demonstrates that populations of A. pisum on pea, clover and alfalfa in France are genetically divergent, which indicates that they constitute distinct host races. We also found a very strong association between host races of A. pisum and their symbiotic microbiota. We stress the need for phylogeographic studies to shed light on the process of host-race formation and acquisition of facultative symbionts in A. pisum. We also question the effects of these symbionts on aphid host fitness, including their role in adaptation to a host plant.
- Published
- 2003
- Full Text
- View/download PDF
24. Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species.
- Author
-
Delmotte F, Sabater-Muñoz B, Prunier-Leterme N, Latorre A, Sunnucks P, Rispe C, and Simon JC
- Subjects
- Animals, Cluster Analysis, Evolution, Molecular, Heterozygote, Likelihood Functions, Microsatellite Repeats genetics, Models, Genetic, Polymorphism, Single-Stranded Conformational, Sequence Analysis, DNA, Aphids genetics, Aphids physiology, Hybridization, Genetic, Phylogeny, Reproduction, Asexual physiology
- Abstract
Understanding the mode of origin of asexuality is central to ongoing debates concerning the evolution and maintenance of sexual reproduction in eukaryotes. This is because it has profound consequences for patterns of genetic diversity and ecological adaptability of asexual lineages, hence on the outcome of competition with sexual relatives both in short and longer terms. Among the possible routes to asexuality, hybridization is a very common mechanism in animals and plants. Aphids present frequent transitions from their ancestral reproductive mode (cyclical parthenogenesis) to permanent asexuality, but the mode of origin of asexual lineages is generally not known because it has never been thoroughly investigated with appropriate molecular tools. Rhopalosiphum padi is an aphid species with coexisting sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) lineages that are genetically distinct. Previous studies have shown that asexual lineages of R. padi are heterozygous at most nuclear loci, suggesting either that they have undergone long-term asexuality (under which heterozygosity tends to increase) or that they have hybrid origins. To discriminate between these alternatives, we conducted an extensive molecular survey combining the sequence analysis of alleles of two nuclear DNA markers and mitochondrial DNA haplotypes in sexual and asexual lineages of R. padi. Both nuclear and cytoplasmic markers clearly showed that many asexual lineages have hybrid origins, the first such demonstration in aphids. Our results also indicated that asexuals result from multiple events of hybridization between R. padi and an unknown sibling species, and are of recent origin (contradicting previous estimates that asexual R. padi lineages were of moderate longevity). This study constitutes another example that putatively ancient asexual lineages are actually of much more recent origin than previously thought. It also presents a robust approach for testing whether hybrid origin of asexuality is also a common phenomenon in aphids.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.