1. Study of cell migration trajectory on two-dimensional continuous stiffness gradient surface edited by grayscale photopolymerization.
- Author
-
Lei KF, Bai KC, and Pai PC
- Subjects
- Humans, Surface Properties, Hydrogels chemistry, Photochemical Processes, Cell Movement, Acrylic Resins chemistry, Polymerization radiation effects
- Abstract
In native tissues, cells encounter a diverse range of stiffness, which can significantly affect their behavior and function. The ability of cells to sense and respond to these mechanical cues is essential for various physiological processes, including cell migration. Cell migration is a complex process influenced by multiple factors, with substrate stiffness emerging as a critical determinant. This study developed a technique to edit the stiffness of polyacrylamide (PAA) hydrogel substrates by adjusting the grayscale level of a photomask during photopolymerization. By analyzing cell morphologies on the hydrogel, we confirmed the development of a single PAA hydrogel substrate with continuous stiffness gradients. This method was used to explore the correlation between substrate stiffness and cell migration dynamics. The study found that cells typically migrated from softer to stiffer surfaces. When the cells initially located on stiffer surfaces, they were able to travel longer distances. Additionally, a continuous 2D stiffness gradient surface was fabricated to explore how cells migrate on smoother versus steeper stiffness gradients. The results showed that cells tended to migrate more readily on smoother stiffness gradient surfaces compared to steeper ones. This study provides valuable insights into cell migration dynamics on substrates with varying stiffness gradients. The results underscore the importance of the mechanical environment in cancer cell migration and offer promising directions for developing interventions to prevent cancer spread., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2025
- Full Text
- View/download PDF