Back to Search
Start Over
Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by in Situ Dopamine Polymerization.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2021 Sep 01; Vol. 13 (34), pp. 40290-40301. Date of Electronic Publication: 2021 Aug 19. - Publication Year :
- 2021
-
Abstract
- Hydrogel patches with high toughness, stretchability, and adhesive properties are critical to healthcare applications including wound dressings and wearable devices. Gelatin methacryloyl (GelMA) provides a highly biocompatible and accessible hydrogel platform. However, low tissue adhesion and poor mechanical properties of cross-linked GelMA patches ( i.e ., brittleness and low stretchability) have been major obstacles to their application for sealing and repair of wounds. Here, we show that adding dopamine (DA) moieties in larger quantities than those of conjugated counterparts to the GelMA prepolymer solution followed by alkaline DA oxidation could result in robust mechanical and adhesive properties in GelMA-based hydrogels. In this way, cross-linked patches with ∼140% stretchability and ∼19 000 J/m <superscript>3</superscript> toughness, which correspond to ∼5.7 and ∼3.3× improvement, respectively, compared to that of GelMA controls, were obtained. The DA oxidization in the prepolymer solution was found to play an important role in activating adhesive properties of cross-linked GelMA patches (∼4.0 and ∼6.9× increase in adhesion force under tensile and shear modes, respectively) due to the presence of reactive oxidized quinone species. We further conducted a parametric study on the factors such as UV light parameters, the photoinitiator type ( i.e ., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, LAP, versus 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, Irgacure 2959), and alkaline DA oxidation to tune the cross-linking density and thereby hydrogel compliance for better adhesive properties. The superior adhesion performance of the resulting hydrogel along with in vitro cytocompatibility demonstrated its potential for use in skin-attachable substrates.
- Subjects :
- Adhesives chemical synthesis
Adhesives toxicity
Animals
Cell Survival drug effects
Cross-Linking Reagents chemistry
Cross-Linking Reagents radiation effects
Cross-Linking Reagents toxicity
Dopamine chemistry
Dopamine radiation effects
Gelatin radiation effects
Gelatin toxicity
Hydrogels chemical synthesis
Hydrogels toxicity
Indoles chemical synthesis
Indoles toxicity
Materials Testing
Methacrylates radiation effects
Methacrylates toxicity
Mice
NIH 3T3 Cells
Polymerization radiation effects
Polymers chemical synthesis
Polymers toxicity
Skin metabolism
Swine
Tensile Strength
Ultraviolet Rays
Adhesives chemistry
Gelatin chemistry
Hydrogels chemistry
Indoles chemistry
Methacrylates chemistry
Polymers chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 13
- Issue :
- 34
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 34410697
- Full Text :
- https://doi.org/10.1021/acsami.1c10048