1. How much can air conditioning increase air temperatures for a city like Paris, France?
- Author
-
G. Pigeon, Michele Merchat, Francis Meunier, Pierre Bousquet, Brice Tremeac, Cécile de Munck, Colette Marchadier, Pierre Poeuf, Valéry Masson, Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Laboratoire Génie des Procédés pour l'Environnement, l'Energie et la Santé (LGP2ES), Conservatoire National des Arts et Métiers [CNAM] (CNAM), R&D, and Climespace
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,Planetary boundary layer ,business.industry ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Environmental engineering ,Free cooling ,010501 environmental sciences ,Sensible heat ,7. Clean energy ,01 natural sciences ,13. Climate action ,Air conditioning ,Waste heat ,Climatology ,11. Sustainability ,Environmental science ,Current (fluid) ,Urban heat island ,business ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Evaporative cooler - Abstract
A consequence of urban heat islands in summer is an increase in the use of air conditioning in urbanized areas, which while cooling the insides of buildings, releases waste heat to the atmosphere. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been used to simulate and quantify the potential impacts on street temperature of four air conditioning scenarios at the scale of Paris. The first case consists of simulating the current types of systems in the city and was based on inventories of dry and evaporative cooling towers and free cooling systems with the river Seine. The other three scenarios were chosen to test the impacts of likely trends in air conditioning equipment in the city: one for which all evaporative and free cooling systems were replaced by dry systems, and the other two designed on a future doubling of the overall air conditioning power but with different technologies. The comparison between the scenarios with heat releases in the street and the baseline case without air conditioning showed a systematic increase in the street air temperature, and this increase was greater at nighttime than day time. It is counter-intuitive because the heat releases are higher during the day. This is due to the shallower atmospheric boundary layer during the night. The increase in temperature was 0.5 °C in the situation with current heat releases, 1 °C with current releases converted to only sensible heat, and 2 °C for the future doubling of air conditioning waste heat released to air. These results demonstrated to what extent the use of air conditioning could enhance street air temperatures at the scale of a city like Paris, and the importance of a spatialized approach for a reasoned planning for future deployment of air conditioning in the city.
- Published
- 2012
- Full Text
- View/download PDF