Back to Search Start Over

How much can air conditioning increase air temperatures for a city like Paris, France?

Authors :
G. Pigeon
Michele Merchat
Francis Meunier
Pierre Bousquet
Brice Tremeac
Cécile de Munck
Colette Marchadier
Pierre Poeuf
Valéry Masson
Groupe d'étude de l'atmosphère météorologique (CNRM-GAME)
Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Génie des Procédés pour l'Environnement, l'Energie et la Santé (LGP2ES)
Conservatoire National des Arts et Métiers [CNAM] (CNAM)
R&D
Climespace
Source :
International Journal of Climatology, International Journal of Climatology, Wiley, 2012, 33 (1), pp.210-227. ⟨10.1002/joc.3415⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

A consequence of urban heat islands in summer is an increase in the use of air conditioning in urbanized areas, which while cooling the insides of buildings, releases waste heat to the atmosphere. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been used to simulate and quantify the potential impacts on street temperature of four air conditioning scenarios at the scale of Paris. The first case consists of simulating the current types of systems in the city and was based on inventories of dry and evaporative cooling towers and free cooling systems with the river Seine. The other three scenarios were chosen to test the impacts of likely trends in air conditioning equipment in the city: one for which all evaporative and free cooling systems were replaced by dry systems, and the other two designed on a future doubling of the overall air conditioning power but with different technologies. The comparison between the scenarios with heat releases in the street and the baseline case without air conditioning showed a systematic increase in the street air temperature, and this increase was greater at nighttime than day time. It is counter-intuitive because the heat releases are higher during the day. This is due to the shallower atmospheric boundary layer during the night. The increase in temperature was 0.5 °C in the situation with current heat releases, 1 °C with current releases converted to only sensible heat, and 2 °C for the future doubling of air conditioning waste heat released to air. These results demonstrated to what extent the use of air conditioning could enhance street air temperatures at the scale of a city like Paris, and the importance of a spatialized approach for a reasoned planning for future deployment of air conditioning in the city.

Details

Language :
English
ISSN :
08998418 and 10970088
Database :
OpenAIRE
Journal :
International Journal of Climatology, International Journal of Climatology, Wiley, 2012, 33 (1), pp.210-227. ⟨10.1002/joc.3415⟩
Accession number :
edsair.doi.dedup.....60c60477c15015d87c4a7dc47302e1fd
Full Text :
https://doi.org/10.1002/joc.3415⟩