1. Efficient synthesis of β-lactam antibiotics with in situ product removal by a newly isolated penicillin G acylase.
- Author
-
Pan X, Li A, Peng Z, Ji X, Chu J, and He B
- Subjects
- Anti-Bacterial Agents chemistry, Molecular Docking Simulation, Molecular Structure, Penicillin Amidase genetics, Penicillin Amidase isolation & purification, Solubility, beta-Lactams chemistry, Achromobacter denitrificans enzymology, Anti-Bacterial Agents biosynthesis, Penicillin Amidase metabolism, beta-Lactams metabolism
- Abstract
A penicillin G acylase (PGA) from Achromobacter xylosoxidans PX02 was newly isolated, and site-directed mutagenesis at three important positions αR141, αF142, βF24 was carried out for improving the enzymatic synthesis of β-lactam antibiotics. The efficient mutant βF24A was selected, and the (P
s /Ph )ini (ratio between the initial rate of synthesis and hydrolysis of the activated acyl donor) dramatically increased from 1.42-1.50 to 23.8-24.1 by means of the optimization of reaction conditions. Interestingly, the efficient enzymatic synthesis of ampicillin (99.1% conversion) and amoxicillin (98.7% conversion) from a high concentration (600 mM) of substrate 6-APA in the low acyl donor/nucleus ratio (1.1:1) resulted in a large amount of products precipitation from aqueous reaction solution. Meanwhile, the by-product D-phenylglycine was hardly precipitated, and 93.5% yield of precipitated ampicillin (561 mM) and 94.6% yield of precipitated amoxicillin (568 mM) were achieved with high purity (99%), which significantly simplified the downstream purification. This was the first study to achieve efficient β-lactam antibiotics synthesis process with in situ product removal, with barely any by-product formation. The effect enzymatic synthesis of antibiotics in aqueous reaction solution with in situ product removal provides a promising model for the industrial semi-synthesis of β-lactam antibiotics., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Inc. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF