2,019 results on '"Pandey, B."'
Search Results
2. Viscous Heating and Instabilities in the Partially Ionized Solar Atmosphere
- Author
-
Pandey, B. P. and Wardle, Mark
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Plasma Physics ,Physics - Space Physics - Abstract
In weak magnetic fields ($\lesssim 50 \,\mbox{G}$), parallel and perpendicular viscosities, mainly from neutrals, may exceed magnetic diffusivities (Ohm, Hall, ambipolar) in the middle and upper chromosphere. Ion-driven gyroviscosity may dominate in the upper chromosphere and transition region. In strong fields ($\gtrsim 100\, \mbox{G}$), viscosities primarily exceed diffusivities in the upper chromosphere and transition region. Parallel and perpendicular viscosities, being similar in magnitude, dampen waves and potentially compete with ambipolar diffusion in plasma heating, potentially inhibiting Hall and ambipolar instabilities when equal. The perpendicular viscosity tensor has two components, $\nu_1$ and $\nu_2$, which differ slightly and show weak dependence on ion magnetization. Their differences, combined with shear, may destabilize waves, though magnetic diffusion introduces a cutoff for this instability. In configurations with a magnetic field $\bf{B}$ having vertical ($b_z=B_z/|\bf{B}|$) and azimuthal ($b_y=B_y/|\bf{B}|$) components, and a wavevector $\bf{k}$ with radial ($\kx=k_x/|\bf{k}|$) and vertical ($\kz=k_z/|\bf{k}|$) components, parallel viscosity and Hall diffusion can generate the viscous-Hall instability. Gyroviscosity further destabilizes waves in the upper regions. These findings indicate that the solar atmosphere may experience various viscous instabilities, revealing complex interactions between viscosity, magnetic fields, and plasma dynamics across different atmospheric regions., Comment: 20 pages, 17 figures, MNRAS (accepted)
- Published
- 2024
- Full Text
- View/download PDF
3. The EMC Effect of Tritium and Helium-3 from the JLab MARATHON Experiment
- Author
-
Abrams, D., Albataineh, H., Aljawrneh, B. S., Alsalmi, S., Androic, D., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Butler, J., Camsonne, A., Carmignotto, M., Castellanos, J., Chen, J. -P., Cloët, I. C., Cohen, E. O., Covrig, S., Craycraft, K., Cruz-Torres, R., Dongwi, B., Duran, B., Dutta, D., Fomin, N., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Gomez, J., Gu, C., Habarakada, A., Hague, T., Hansen, J. -O., Hattawy, M., Hauenstein, F., Higinbotham, D. W., Holt, R. J., Hughes, E. W., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Karki, A., Karki, B., Katramatou, A. T., Keith, C., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., Kievsky, A., King, D., King, P. M., Korover, I., Kulagin, S. A., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Li, S., Li, W., Liu, H., Liuti, S., Liyanage, N., Markowitz, P., McClellan, R. E., Meekins, D., Beck, S. Mey-Tal, Meziani, Z. -E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nguyen, D., Nuruzzaman, Nycz, M., Obrecht, R., Olson, M., Owen, V. F., Pace, E., Pandey, B., Pandey, V., Paolone, M., Papadopoulou, A., Park, S., Paul, S., Petratos, G. G., Petti, R., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R. D., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Salmè, G., Santiesteban, N., Sawatzky, B., Scopetta, S., Schmidt, A., Schmookler, B., Segal, J., Segarra, E. P., Shahinyan, A., Širca, S., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Tortorici, F., Urciuoli, G. M., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
Nuclear Experiment - Abstract
Measurements of the EMC effect in the tritium and helium-3 mirror nuclei are reported. The data were obtained by the MARATHON Jefferson Lab experiment, which performed deep inelastic electron scattering from deuterium and the three-body nuclei, using a cryogenic gas target system and the High Resolution Spectrometers of the Hall A Facility of the Lab. The data cover the Bjorken $x$ range from 0.20 to 0.83, corresponding to a squared four-momentum transfer $Q^2$ range from 2.7 to $11.9\gevsq$, and to an invariant mass $W$ of the final hadronic state greater than 1.84 GeV/${\it c}^2$. The tritium EMC effect measurement is the first of its kind. The MARATHON experimental results are compared to results from previous measurements by DESY-HERMES and JLab-Hall C experiments, as well as with few-body theoretical predictions., Comment: arXiv admin note: text overlap with arXiv:2104.05850
- Published
- 2024
4. Flavor Dependence of Charged Pion Fragmentation Functions
- Author
-
Bhatt, H., Bosted, P., Jia, S., Armstrong, W., Dutta, D., Ent, R., Gaskell, D., Kinney, E., Mkrtchyan, H., Ali, S., Ambrose, R., Androic, D., Gayoso, C. Ayerbe, Bandari, A., Berdnikov, V., Bhetuwal, D., Biswas, D., Boer, M., Brash, E., Camsonne, A., Chen, J. P., Chen, J., Chen, M., Christy, E. M., Covrig, S., Danagoulian, S., Diefenthaler, M., Duran, B., Elaasar, M., Elliot, C., Fenker, H., Fuchey, E., Hansen, J. O., Hauenstein, F., Horn, T., Huber, G. M., Jones, M. K., Kabir, M. L., Karki, A., Karki, B., Kay, S. J. D., Keppel, C., Kumar, V., Lashley-Colthirst, N., Li, W. B., Mack, D., Malace, S., Markowitz, P., McCaughan, M., McClellan, E., Meekins, D., Michaels, R., Mkrtchyan, A., Niculescu, G., Niculescu, I., Pandey, B., Park, S., Pooser, E., Rehfuss, M., Sawatzky, B., Smith, G. R., Szumila-Vance, H., Tadepalli, A. S., Tadevosyan, V., Trotta, R., Voskanyan, H., Wood, S. A., Ye, Z., Yero, C., and Zheng, X.
- Subjects
Nuclear Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
We have measured the flavor dependence of multiplicities for pi^+ and pi^- production in semi-inclusive deep-inelastic scattering (SIDIS) on proton and deuteron targets to explore a possible charge symmetry violation in fragmentation functions. The experiment used an electron beam with energies of 10.2 and 10.6 GeV at Jefferson Lab and the Hall-C spectrometers. The electron kinematics spanned the range 0.3
- Published
- 2024
5. VL Dhan 158: An early maturing rice variety for rainfed uplands of North-West Himalayas
- Author
-
Aditya, J. P., Agrawal, P. K., Stanley, J., Pandey, B. M., Mishra, K. K., Lal, Devendra, Verma, P. C., Arya, J. K., Panchpal, D. S., Rawat, K. S., and Singh, Anand
- Published
- 2018
- Full Text
- View/download PDF
6. Inclusive studies of two- and three-nucleon short-range correlations in $^3$H and $^3$He
- Author
-
Li, S., Santiesteban, S. N., Arrington, J., Cruz-Torres, R., Kurbany, L., Abrams, D., Alsalmi, S., Androic, D., Aniol, K., Averett, T., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J., Chen, J-P., Chrisman, D., Christy, M. E., Clarke, C., Covrig, S., Craycraft, K., Day, D., Dutta, D., Fuchey, E., Gal, C., Garibaldi, F., Gautam, T. N., Gogami, T., Gomez, J., Guéye, P., Habarakada, A., Hague, T. J., Hansen, J. O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holt, R. J., Hyde, C., Itabashi, K., Kaneta, M., Karki, A., Katramatou, A. T., Keppel, C. E., Khachatryan, M., Khachatryan, V., King, P. M., Korover, I., Kutz, T., Lashley-Colthirst, N., Li, W. B., Liu, H., Liyanage, N., Long, E., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Beck, S. Mey-Tal, Michaels, R., Mihovilovič, M., Moyer, A., Nagao, S., Nelyubin, V., Nguyen, D., Nycz, M., Olson, M., Ou, L., Owen, V., Palatchi, C., Pandey, B., Papadopoulou, A., Park, S., Paul, S., Petkovic, T., Pomatsalyuk, R., Premathilake, S., Punjabi, V., Ransome, R. D., Reimer, P. E., Reinhold, J., Riordan, S., Roche, J., Rodriguez, V. M., Schmidt, A., Schmookler, B., Segarra, E. P., Shahinyan, A., Širca, S., Slifer, K., Solvignon, P., Su, T., Suleiman, R., Szumila-Vance, H., Tang, L., Tian, Y., Tireman, W., Tortorici, F., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S., Ye, Z. H., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
Inclusive electron scattering at carefully chosen kinematics can isolate scattering from short-range correlations (SRCs), produced through hard, short-distance interactions of nucleons in the nucleus. Because the two-nucleon (2N) SRCs arise from the same N-N interaction in all nuclei, the cross section in the SRC-dominated regime is identical up to an overall scaling factor, and the A/2H cross section ratio is constant in this region. This scaling behavior has been used to identify SRC dominance and to map out the contribution of SRCs for a wide range of nuclei. We examine this scaling behavior at lower momentum transfers using new data on $^2$H, $^3$H, and $^3$He which show that the scaling region is larger than in heavy nuclei. Based on the improved scaling, especially for $^3$H/$^3$He, we examine the ratios at kinematics where three-nucleon SRCs may play an important role. The data for the largest initial nucleon momenta are consistent with isolation of scattering from 3N-SRCs, and suggest that the very-highest momentum nucleons in $^3$He have a nearly isospin-independent momentum configuration, or a small enhancement of the proton distribution.
- Published
- 2024
7. Electroproduction of the Lambda/Sigma^0 hyperons at Q^2~0.5 (GeV/c)^2 at forward angles
- Author
-
Okuyama, K., Itabashi, K., Nagao, S., Nakamura, S. N., Suzuki, K. N., Gogami, T., Pandey, B., Tang, L., Bydžovský, P., Skoupil, D., Mart, T., Abrams, D., Akiyama, T., Androic, D., Aniol, K., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Camsonne, A., Castellanos, J., Chen, J-P., Chen, J., Covrig, S., Chrisman, D., Cruz-Torres, R., Das, R., Fuchey, E., Gnanvo, K., Garibaldi, F., Gautam, T., Gomez, J., Gueye, P., Hague, T. J., Hansen, O., Henry, W., Hauenstein, F., Higinbotham, D. W., Hyde, C. E., Kaneta, M., Keppel, C., Kutz, T., Lashley-Colthirst, N., Li, S., Liu, H., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Michaels, R., Mihovilovič, M., Moyer, A., Nguyen, D., Nycz, M., Owen, V., Palatchi, C., Park, S., Petkovic, T., Premathilake, S., Reimer, P. E., Reinhold, J., Riordan, S., Rodriguez, V., Samanta, C., Santiesteban, S. N., Sawatzky, B., Širca, S., Slifer, K., Su, T., Tian, Y., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S. A., Yale, B., Ye, Z., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment - Abstract
In 2018, the E12-17-003 experiment was conducted at the Thomas Jefferson National Accelerator Facility (JLab) to explore the possible existence of an nnLambda state in the reconstructed missing mass distribution from a tritium gas target [K. N. Suzuki et al., Prog. Theor. Exp. Phys. 2022, 013D01 (2022), B. Pandey et al., Phys. Rev. C 105, L051001 (2022)]. As part of this investigation, data was also collected using a gaseous hydrogen target, not only for a precise absolute mass scale calibration but also for the study of Lambda/Sigma^0 electroproduction. This dataset was acquired at Q^2~0.5 (GeV/c)^2, W=2.14 GeV, and theta_{gamma K}^{c.m.}~8 deg. It covers forward angles where photoproduction data is scarce and a low-Q^2 region that is of interest for hypernuclear experiments. On the other hand, this kinematic region is at a slightly higher Q^2 than previous hypernuclear experiments, thus providing crucial information for understanding the Q^2 dependence of the differential cross sections for Lambda/Sigma^0 hyperon electroproduction. This paper reports on the Q^2 dependence of the differential cross section for the e + p -> e' + K^+ + Lambda/Sigma^0 reaction in the 0.2-0.8 (GeV/c)^2, and provides comparisons with the currently available theoretical models., Comment: 11 pages, 15 figures
- Published
- 2024
8. Novel Measurement of the Neutron Magnetic Form Factor from A=3 Mirror Nuclei
- Author
-
Santiesteban, SN, Li, S, Abrams, D, Alsalmi, S, Androic, D, Aniol, K, Arrington, J, Averett, T, Gayoso, C Ayerbe, Bane, J, Barcus, S, Barrow, J, Beck, A, Bellini, V, Bhatt, H, Bhetuwal, D, Biswas, D, Camsonne, A, Castellanos, J, Chen, J, Chen, J-P, Chrisman, D, Christy, ME, Clarke, C, Covrig, S, Cruz-Torres, R, Day, D, Dutta, D, Fuchey, E, Gal, C, Garibaldi, F, Gautam, TN, Gogami, T, Gomez, J, Guèye, P, Hague, TJ, Hansen, JO, Hauenstein, F, Henry, W, Higinbotham, DW, Holt, RJ, Hyde, C, Itabashi, K, Kaneta, M, Karki, A, Katramatou, AT, Keppel, CE, King, PM, Kurbany, L, Kutz, T, Lashley-Colthirst, N, Li, WB, Liu, H, Liyanage, N, Long, E, Lovato, A, Mammei, J, Markowitz, P, McClellan, RE, Meddi, F, Meekins, D, Michaels, R, Mihovilovič, M, Moyer, A, Nagao, S, Nguyen, D, Nycz, M, Olson, M, Ou, L, Owen, V, Palatchi, C, Pandey, B, Papadopoulou, A, Park, S, Petkovic, T, Premathilake, S, Punjabi, V, Ransome, RD, Reimer, PE, Reinhold, J, Riordan, S, Rocco, N, Rodriguez, VM, Schmidt, A, Schmookler, B, Segarra, EP, Shahinyan, A, Širca, S, Slifer, K, Solvignon, P, Su, T, Suleiman, R, Tang, L, Tian, Y, Tireman, W, Tortorici, F, Toyama, Y, Uehara, K, Urciuoli, GM, and Votaw, D
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Jefferson Lab Hall A Collaboration ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
The electromagnetic form factors of the proton and neutron encode information on the spatial structure of their charge and magnetization distributions. While measurements of the proton are relatively straightforward, the lack of a free neutron target makes measurements of the neutron's electromagnetic structure more challenging and more sensitive to experimental or model-dependent uncertainties. Various experiments have attempted to extract the neutron form factors from scattering from the neutron in deuterium, with different techniques providing different, and sometimes large, systematic uncertainties. We present results from a novel measurement of the neutron magnetic form factor using quasielastic scattering from the mirror nuclei ^{3}H and ^{3}He, where the nuclear effects are larger than for deuterium but expected to largely cancel in the cross-section ratios. We extracted values of the neutron magnetic form factor for low-to-modest momentum transfer, 0.6
- Published
- 2024
9. Effect of Construction Time on the Behavior of Embankment Constructed on ESC-Improved Clayey Soil
- Author
-
Shukla, A., Pandey, B. K., Ingale, R., Vivek, A. K., and Meshram, K.
- Published
- 2024
- Full Text
- View/download PDF
10. Physio-chemical analysis of water from different altitudes of Kathmandu Valley, Nepal
- Author
-
Mahara, P., Paudel, Y., Chaudhary, P., Gaihre, S., Dhakal, A., and Pandey, B.
- Published
- 2024
- Full Text
- View/download PDF
11. A Study on Customer Perception Towards Usage of Debit Cards in Chhattisgarh
- Author
-
Pandey, B. B and Nirala, Chandrawati
- Published
- 2016
- Full Text
- View/download PDF
12. Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
- Author
-
Accardi, A., Achenbach, P., Adhikari, D., Afanasev, A., Akondi, C. S., Akopov, N., Albaladejo, M., Albataineh, H., Albrecht, M., Almeida-Zamora, B., Amaryan, M., Androić, D., Armstrong, W., Armstrong, D. S., Arratia, M., Arrington, J., Asaturyan, A., Austregesilo, A., Avakian, H., Averett, T., Gayoso, C. Ayerbe, Bacchetta, A., Balantekin, A. B., Baltzell, N., Barion, L., Barry, P. C., Bashir, A., Battaglieri, M., Bellini, V., Belov, I., Benhar, O., Benkel, B., Benmokhtar, F., Bentz, W., Bertone, V., Bhatt, H., Bianconi, A., Bibrzycki, L., Bijker, R., Binosi, D., Biswas, D., Boër, M., Boeglin, W., Bogacz, S. A., Boglione, M., Bondí, M., Boos, E. E., Bosted, P., Bozzi, G., Brash, E. J., Briceño, R. A., Brindza, P. D., Briscoe, W. J., Brodsky, S. J., Brooks, W. K., Burkert, V. D., Camsonne, A., Cao, T., Cardman, L. S., Carman, D. S., Carpinelli, M., Cates, G. D., Caylor, J., Celentano, A., Celiberto, F. G., Cerutti, M., Chang, L., Chatagnon, P., Chen, C., Chen, J.-P., Chetry, T., Christopher, A., Christy, E., Chudakov, E., Cisbani, E., Cloët, I. C., Cobos-Martinez, J. J., Cohen, E. O., Colangelo, P., Cole, P. L., Constantinou, M., Contalbrigo, M., Costantini, G., Cosyn, W., Cotton, C., Courtoy, A., Dusa, S. Covrig, Crede, V., Cui, Z.-F., D’Angelo, A., Döring, M., Dalton, M. M., Danilkin, I., Davydov, M., Day, D., De Fazio, F., De Napoli, M., De Vita, R., Dean, D. J., Defurne, M., de Paula, W., de Téramond, G. F., Deur, A., Devkota, B., Dhital, S., Di Nezza, P., Diefenthaler, M., Diehl, S., Dilks, C., Ding, M., Djalali, C., Dobbs, S., Dupré, R., Dutta, D., Edwards, R. G., Egiyan, H., Ehinger, L., Eichmann, G., Elaasar, M., Elouadrhiri, L., Alaoui, A. El, Fassi, L. El, Emmert, A., Engelhardt, M., Ent, R., Ernst, D. J., Eugenio, P., Evans, G., Fanelli, C., Fegan, S., Fernández-Ramírez, C., Fernandez, L. A., Fernando, I. P., Filippi, A., Fischer, C. S., Fogler, C., Fomin, N., Frankfurt, L., Frederico, T., Freese, A., Fu, Y., Gamberg, L., Gan, L., Gao, F., Garcia-Tecocoatzi, H., Gaskell, D., Gasparian, A., Gates, K., Gavalian, G., Ghoshal, P. K., Giachino, A., Giacosa, F., Giannuzzi, F., Gilfoyle, G.-P., Girod, F.-X., Glazier, D. I., Gleason, C., Godfrey, S., Goity, J. L., Golubenko, A. A., Gonzàlez-Solís, S., Gothe, R. W., Gotra, Y., Griffioen, K., Grocholski, O., Grube, B., Guèye, P., Guo, F.-K., Guo, Y., Guo, L., Hague, T. J., Hammoud, N., Hansen, J.-O., Hattawy, M., Hauenstein, F., Hayward, T., Heddle, D., Heinrich, N., Hen, O., Higinbotham, D. W., Higuera-Angulo, I. M., Hiller Blin, A. N., Hobart, A., Hobbs, T., Holmberg, D. E., Horn, T., Hoyer, P., Huber, G. M., Hurck, P., Hutauruk, P. T. P., Ilieva, Y., Illari, I., Ireland, D. G., Isupov, E. L., Italiano, A., Jaegle, I., Jarvis, N. S., Jenkins, D. J., Jeschonnek, S., Ji, C.-R., Jo, H. S., Jones, M., Jones, R. T., Jones, D. C., Joo, K., Junaid, M., Kageya, T., Kalantarians, N., Karki, A., Karyan, G., Katramatou, A. T., Kay, S. J. D., Kazimi, R., Keith, C. D., Keppel, C., Kerbizi, A., Khachatryan, V., Khanal, A., Khandaker, M., Kim, A., Kinney, E. R., Kohl, M., Kotzinian, A., Kriesten, B. T., Kubarovsky, V., Kubis, B., Kuhn, S. E., Kumar, V., Kutz, T., Leali, M., Lebed, R. F., Lenisa, P., Leskovec, L., Li, S., Li, X., Liao, J., Lin, H.-W., Liu, L., Liuti, S., Liyanage, N., Lu, Y., MacGregor, I. J. D., Mack, D. J., Maiani, L., Mamo, K. A., Mandaglio, G., Mariani, C., Markowitz, P., Marukyan, H., Mascagna, V., Mathieu, V., Maxwell, J., Mazouz, M., McCaughan, M., McKeown, R. D., McKinnon, B., Meekins, D., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z.-E., Mezrag, C., Michaels, R., Miller, G. A., Mineeva, T., Miramontes, A. S., Mirazita, M., Mizutani, K., Mkrtchyan, A., Mkrtchyan, H., Moffit, B., Mohanmurthy, P., Mokeev, V. I., Monaghan, P., Montaña, G., Montgomery, R., Moretti, A., Chàvez, J. M. Morgado, Mosel, U., Movsisyan, A., Musico, P., Nadeeshani, S. A., Nadolsky, P. M., Nakamura, S. X., Nazeer, J., Nefediev, A. V., Neupane, K., Nguyen, D., Niccolai, S., Niculescu, I., Niculescu, G., Nocera, E. R., Nycz, M., Olness, F. I., Ortega, P. G., Osipenko, M., Pace, E., Pandey, B., Pandey, P., Papandreou, Z., Papavassiliou, J., Pappalardo, L. L., Paredes-Torres, G., Paremuzyan, R., Park, S., Parsamyan, B., Paschke, K. D., Pasquini, B., Passemar, E., Pasyuk, E., Patel, T., Paudel, C., Paul, S. J., Peng, J.-C., Pentchev, L., Perrino, R., Perry, R. J., Peters, K., Petratos, G. G., Phelps, W., Piasetzky, E., Pilloni, A., Pire, B., Pitonyak, D., Pitt, M. L., Polosa, A. D., Pospelov, M., Postuma, A. C., Poudel, J., Preet, L., Prelovsek, S., Price, J. W., Prokudin, A., Puckett, A. J. R., Pybus, J. R., Qin, S.-X., Qiu, J.-W., Radici, M., Rashidi, H., Rathnayake, A. D., Raue, B. A., Reed, T., Reimer, P. E., Reinhold, J., Richard, J.-M., Rinaldi, M., Ringer, F., Ripani, M., Ritman, J., West, J. Rittenhouse, Rivero-Acosta, A., Roberts, C. D., Rodas, A., Rodini, S., Rodríguez-Quintero, J., Rogers, T. C., Rojo, J., Rossi, P., Rossi, G. C., Salmè, G., Santiesteban, S. N., Santopinto, E., Sargsian, M., Sato, N., Schadmand, S., Schmidt, A., Schmidt, S. M., Schnell, G., Schumacher, R. A., Schweitzer, P., Scimemi, I., Scott, K. C., Seay, D. A., Segovia, J., Semenov-Tian-Shansky, K., Seryi, A., Sharda, A. S., Shepherd, M. R., Shirokov, E. V., Shrestha, S., Shrestha, U., Shvedunov, V. I., Signori, A., Slifer, K. J., Smith, W. A., Somov, A., Souder, P., Sparveris, N., Spizzo, F., Spreafico, M., Stepanyan, S., Stevens, J. R., Strakovsky, I. I., Strauch, S., Strikman, M., Su, S., Sumner, B. C. L., Sun, E., Suresh, M., Sutera, C., Swanson, E. S., Szczepaniak, A. P., Sznajder, P., Szumila-Vance, H., Szymanowski, L., Tadepalli, A.-S., Tadevosyan, V., Tamang, B., Tarasov, V. V., Thiel, A., Tong, X.-B., Tyson, R., Ungaro, M., Urciuoli, G. M., Usman, A., Valcarce, A., Vallarino, S., Vaquera-Araujo, C. A., Venturelli, L., Vera, F., Vladimirov, A., Vossen, A., Wagner, J., Wei, X., Weinstein, L. B., Weiss, C., Williams, R., Winney, D., Wojtsekhowski, B., Wood, M. H., Xiao, T., Xu, S.-S., Ye, Z., Yero, C., Yuan, C.-P., Yurov, M., Zachariou, N., Zhang, Z., Zhao, Y., Zhao, Z. W., Zheng, X., Zhou, X., Ziegler, V., and Zihlmann, B.
- Published
- 2024
- Full Text
- View/download PDF
13. Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
- Author
-
Accardi, A., Achenbach, P., Adhikari, D., Afanasev, A., Akondi, C. S., Akopov, N., Albaladejo, M., Albataineh, H., Albrecht, M., Almeida-Zamora, B., Amaryan, M., Androić, D., Armstrong, W., Armstrong, D. S., Arratia, M., Arrington, J., Asaturyan, A., Austregesilo, A., Avagyan, H., Averett, T., Gayoso, C. Ayerbe, Bacchetta, A., Balantekin, A. B., Baltzell, N., Barion, L., Barry, P. C., Bashir, A., Battaglieri, M., Bellini, V., Belov, I., Benhar, O., Benkel, B., Benmokhtar, F, Bentz, W., Bertone, V., Bhatt, H., Bianconi, A., Bibrzycki, L., Bijker, R., Binosi, D., Biswas, D., Boër, M., Boeglin, W., Bogacz, S. A., Boglione, M., Bondí, M., Boos, E. E., Bosted, P., Bozzi, G., Brash, E. J., Briceño, R. A., Brindza, P. D., Briscoe, W. J., Brodsky, S. J, Brooks, W. K., Burkert, V. D., Camsonne, A., Cao, T., Cardman, L. S., Carman, D. S., Carpinelli, M, Cates, G. D., Caylor, J., Celentano, A., Celiberto, F. G., Cerutti, M., Chang, Lei, Chatagnon, P., Chen, C., Chen, J-P, Chetry, T., Christopher, A., Christy, E., Chudakov, E., Cisbani, E., Cloët, I. C., Cobos-Martinez, J. J., Cohen, E. O., Colangelo, P., Cole, P. L., Constantinou, M., Contalbrigo, M., Costantini, G., Cosyn, W., Cotton, C., Courtoy, A., Dusa, S. Covrig, Crede, V., Cui, Z. -F., D'Angelo, A., Döring, M., Dalton, M. M., Danilkin, I., Davydov, M., Day, D., De Fazio, F., De Napoli, M., De Vita, R., Dean, D. J., Defurne, M., Deur, A., Devkota, B., Dhital, S., Di Nezza, P., Diefenthaler, M., Diehl, S., Dilks, C., Ding, M., Djalali, C., Dobbs, S., Dupré, R., Dutta, D., Edwards, R. G., Egiyan, H., Ehinger, L., Eichmann, G., Elaasar, M., Elouadrhiri, L., Alaoui, A. El, Fassi, L. El, Emmert, A., Engelhardt, M., Ent, R., Ernst, D. J, Eugenio, P., Evans, G., Fanelli, C., Fegan, S., Fernández-Ramírez, C., Fernandez, L. A., Fernando, I. P., Filippi, A., Fischer, C. S., Fogler, C., Fomin, N., Frankfurt, L., Frederico, T., Freese, A., Fu, Y., Gamberg, L., Gan, L., Gao, F., Garcia-Tecocoatzi, H., Gaskell, D., Gasparian, A., Gates, K, Gavalian, G., Ghoshal, P. K., Giachino, A., Giacosa, F., Giannuzzi, F., Gilfoyle, G. -P., Girod, F-X, Glazier, D. I., Gleason, C., Godfrey, S., Goity, J. L., Golubenko, A. A., Gonzàlez-Solís, S., Gothe, R. W., Gotra, Y., Griffioen, K., Grocholski, O., Grube, B., Guèye, P., Guo, F. -K., Guo, Y., Guo, L., Hague, T. J., Hammoud, N., Hansen, J. -O., Hattawy, M., Hauenstein, F., Hayward, T., Heddle, D., Heinrich, N., Hen, O., Higinbotham, D. W., Higuera-Angulo, I. M., Blin, A. N. Hiller, Hobart, A., Hobbs, T., Holmberg, D. E, Horn, T., Hoyer, P., Huber, G. M., Hurck, P., Hutauruk, P. T. P., Ilieva, Y., Illari, I., Ireland, D. G, Isupov, E. L., Italiano, A., Jaegle, I., Jarvis, N. S., Jenkins, DJ, Jeschonnek, S., Ji, C-R., Jo, H. S., Jones, M., Jones, R. T., Jones, D. C., Joo, K., Junaid, M., Kageya, T., Kalantarians, N., Karki, A., Karyan, G., Katramatou, A. T., Kay, S. J. D, Kazimi, R., Keith, C. D., Keppel, C., Kerbizi, A., Khachatryan, V., Khanal, A., Khandaker, M., Kim, A., Kinney, E. R., Kohl, M., Kotzinian, A., Kriesten, B. T., Kubarovsky, V., Kubis, B., Kuhn, S. E., Kumar, V., Kutz, T., Leali, M., Lebed, R. F., Lenisa, P., Leskovec, L., Li, S., Li, X., Liao, J., Lin, H. -W., Liu, L., Liuti, S., Liyanage, N., Lu, Y., MacGregor, I. J. D., Mack, D. J., Maiani, L, Mamo, K. A., Mandaglio, G., Mariani, C., Markowitz, P., Marukyan, H., Mascagna, V., Mathieu, V., Maxwell, J., Mazouz, M., McCaughan, M., McKeown, R. D., McKinnon, B., Meekins, D., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z. -E., Mezrag, C., Michaels, R., Miller, G. A., Mineeva, T., Miramontes, A. S., Mirazita, M., Mizutani, K., Mkrtchyan, H., Mkrtchyan, A., Moffit, B., Mohanmurthy, P., Mokeev, V. I., Monaghan, P., Montaña, G., Montgomery, R., Moretti, A., Chàvez, J. M. Morgado, Mosel, U., Movsisyan, A., Musico, P., Nadeeshani, S. A, Nadolsky, P. M., Nakamura, S. X., Nazeer, J., Nefediev, A. V., Neupane, K., Nguyen, D., Niccolai, S., Niculescu, I., Niculescu, G., Nocera, E. R., Nycz, M., Olness, F. I., Ortega, P. G., Osipenko, M., Pace, E., Pandey, B, Pandey, P., Papandreou, Z., Papavassiliou, J., Pappalardo, L. L., Paredes-Torres, G., Paremuzyan, R., Park, S., Parsamyan, B., Paschke, K. D., Pasquini, B., Passemar, E., Pasyuk, E., Patel, T., Paudel, C., Paul, S. J., Peng, J-C., Pentchev, L., Perrino, R., Perry, R. J., Peters, K., Petratos, G. G., Phelps, W., Piasetzky, E., Pilloni, A., Pire, B., Pitonyak, D., Pitt, M. L., Polosa, A. D., Pospelov, M., Postuma, A. C., Poudel, J., Preet, L., Prelovsek, S., Price, J. W., Prokudin, A., Puckett, A. J. R., Pybus, J. R., Qin, S. -X., Qiu, J. -W., Radici, M., Rashidi, H., Rathnayake, A. D, Raue, B. A., Reed, T., Reimer, P. E., Reinhold, J., Richard, J. -M., Rinaldi, M., Ringer, F., Ripani, M., Ritman, J., West, J. Rittenhouse, Rivero-Acosta, A., Roberts, C. D., Rodas, A., Rodini, S., Rodríguez-Quintero, J., Rogers, T. C., Rojo, J., Rossi, P., Rossi, G. C., Salmè, G., Santiesteban, S. N., Santopinto, E., Sargsian, M., Sato, N., Schadmand, S., Schmidt, A., Schmidt, S. M, Schnell, G., Schumacher, R. A., Schweitzer, P., Scimemi, I., Scott, K. C, Seay, D. A, Segovia, J., Semenov-Tian-Shansky, K., Seryi, A., Sharda, A. S, Shepherd, M. R., Shirokov, E. V., Shrestha, S., Shrestha, U., Shvedunov, V. I., Signori, A., Slifer, K. J., Smith, W. A., Somov, A., Souder, P., Sparveris, N., Spizzo, F., Spreafico, M., Stepanyan, S., Stevens, J. R., Strakovsky, I. I., Strauch, S., Strikman, M., Su, S., Sumner, B. C. L., Sun, E., Suresh, M., Sutera, C., Swanson, E. S., Szczepaniak, A. P, Sznajder, P., Szumila-Vance, H., Szymanowski, L., Tadepalli, A. -S., Tadevosyan, V., Tamang, B., Tarasov, V. V., Thiel, A., Tong, X. -B., Tyson, R., Ungaro, M., Urciuoli, G. M., Usman, A., Valcarce, A., Vallarino, S., Vaquera-Araujo, C. A., Venturelli, L., Vera, F., Vladimirov, A., Vossen, A., Wagner, J., Wei, X., Weinstein, L. B., Weiss, C., Williams, R., Winney, D., Wojtsekhowski, B., Wood, M. H., Xiao, T., Xu, S. -S., Ye, Z., Yero, C., Yuan, C. -P., Yurov, M., Zachariou, N., Zhang, Z., Zhao, Z. W., Zhao, Y., Zheng, X., Zhou, X., Ziegler, V., Zihlmann, B., de Paula, W, and de Téramond, G. F.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena., Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figures
- Published
- 2023
14. First Measurement of the EMC effect in B10 and B11
- Author
-
Karki, A, Biswas, D, Gonzalez, FA, Henry, W, Morean, C, Nadeeshani, A, Sun, A, Abrams, D, Ahmed, Z, Aljawrneh, B, Alsalmi, S, Ambrose, R, Androic, D, Armstrong, W, Arrington, J, Asaturyan, A, Assumin-Gyimah, K, Gayoso, C Ayerbe, Bandari, A, Bane, J, Barrow, J, Basnet, S, Berdnikov, V, Bhatt, H, Bhetuwal, D, Boeglin, WU, Bosted, P, Brash, E, Bukhari, MHS, Chen, H, Chen, JP, Chen, M, Christy, ME, Covrig, S, Craycraft, K, Danagoulian, S, Day, D, Diefenthaler, M, Dlamini, M, Dunne, J, Duran, B, Dutta, D, Elliott, C, Ent, R, Fenker, H, Fomin, N, Fuchey, E, Gaskell, D, Gautam, TN, Hansen, JO, Hauenstein, F, Hernandez, AV, Horn, T, Huber, GM, Jones, MK, Joosten, S, Kabir, ML, Kalantarians, N, Keppel, C, Khanal, A, King, PM, Kinney, E, Ko, HS, Kohl, M, Lashley-Colthirst, N, Li, S, Li, WB, Liyanage, AH, Mack, D, Malace, S, Markowitz, P, Matter, J, Meekins, D, Michaels, R, Mkrtchyan, A, Mkrtchyan, H, Nanda, S, Nguyen, D, Niculescu, G, Niculescu, I, Nuruzzaman, Pandey, B, Park, S, Pooser, E, Puckett, AJR, Rehfuss, M, Reinhold, J, Santiesteban, N, Sawatzky, B, Smith, GR, Szumila-Vance, H, Tadepalli, AS, Tadevosyan, V, Trotta, R, Wood, SA, Yero, C, and Zhang, J
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Nuclear and plasma physics - Abstract
The nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in B10 and B11. Previous measurements of the EMC effect in A≤12 nuclei showed an unexpected nuclear dependence; B10 and B11 were measured to explore the EMC effect in this region in more detail. Results are presented for Be9, B10, B11, and C12 at an incident beam energy of 10.6 GeV. The EMC effect in the boron isotopes was found to be similar to that for Be9 and C12, yielding almost no nuclear dependence in the EMC effect in the range A=4-12. This represents important new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei.
- Published
- 2023
15. VL 7620 (VL Dhan 156, IET 20955)
- Author
-
Sharma, R. K., Aditya, J. P., Agrawal, P. K., Singh, O. N., Bhatt, J. C., Stanley, J., Pandey, B. M., Lal, Devendra, Verma, P. C., Arya, Jagdish Kumar, Bisht, Jeevan Singh, Rawat, Kesar Singh, and Singh, Anand
- Published
- 2019
16. Analysis and optimization in hard turning of titanium grade-I using grey relational analysis
- Author
-
Pandey, B., Mahto, S., and Jha, B. K.
- Published
- 2024
- Full Text
- View/download PDF
17. Performance Evaluation of Clayey Soil Considering Impact of Lime During Electrokinetic Consolidation
- Author
-
Javid, A., Pandey, B. K., and Srijan
- Published
- 2024
- Full Text
- View/download PDF
18. A novel measurement of the neutron magnetic form factor from A=3 mirror nuclei
- Author
-
Santiesteban, S. N., Li, S., Abrams, D., Alsalmi, S., Androic, D., Aniol, K., Arrington, J., Averett, T., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Camsonne, A., Castellanos, J., Chen, J., Chen, J-P., Chrisman, D., Christy, M. E., Clarke, C., Covrig, S., Cruz-Torres, R., Day, D., Dutta, D., Fuchey, E., Gal, C., Garibaldi, F., Gautam, T. N., Gogami, T., Gomez, J., Gueye, P., Hague, T. J., Hansen, J. O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holt, R. J., Hyde, C., Itabashi, K., Kaneta, M., Karki, A., Katramatou, A. T., Keppel, C. E., King, P. M., Kurbany, L., Kutz, T., Lashley-Colthirst, N., Li, W. B., Liu, H., Liyanage, N., Long, E., Lovato, A., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Michaels, R., Mihovilovic, M., Moyer, A., Nagao, S., Nguyen, D., Nycz, M., Olson, M., Ou, L., Owen, V., Palatchi, C., Pandey, B., Papadopoulou, A., Park, S., Petkovic, T., Premathilake, 6 S., Punjabi, V., Ransome, R. D., Reimer, P. E., Reinhold, J., Riordan, S., Rocco, N., Rodriguez, V. M., Schmidt, A., Schmookler, B., Segarra, E. P., Shahinyan, A., Sirca, S., Slifer, K., Solvignon, P., Su, T., Suleiman, R., Tang, L., Tian, Y., Tireman, W., Tortorici, F., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S., Ye, Z. H., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment - Abstract
The electromagnetic form factors of the proton and neutron encode information on the spatial structure of their charge and magnetization distributions. While measurements of the proton are relatively straightforward, the lack of a free neutron target makes measurements of the neutron's electromagnetic structure more challenging and more sensitive to experimental or model-dependent uncertainties. Various experiments have attempted to extract the neutron form factors from scattering from the neutron in deuterium, with different techniques providing different, and sometimes large, systematic uncertainties. We present results from a novel measurement of the neutron magnetic form factor using quasielastic scattering from the mirror nuclei $^3$H and $^3$He, where the nuclear effects are larger than for deuterium but expected to largely cancel in the cross-section ratios. We extracted values of the neutron magnetic form factor for low-to-modest momentum transfer, $0.6
- Published
- 2023
19. The Present and Future of QCD
- Author
-
Achenbach, P., Adhikari, D., Afanasev, A., Afzal, F., Aidala, C. A., Al-bataineh, A., Almaalol, D. K., Amaryan, M., Androić, D., Armstrong, W. R., Arratia, M., Arrington, J., Asaturyan, A., Aschenauer, E. C., Atac, H., Avakian, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Barish, K. N., Barnea, N., Basar, G., Battaglieri, M., Baty, A. A., Bautista, I., Bazilevsky, A., Beattie, C., Behera, S. C., Bellini, V., Bellwied, R., Benesch, J. F., Benmokhtar, F., Bernardes, C. A., Bernauer, J. C., Bhatt, H., Bhatta, S., Boer, M., Boettcher, T. J., Bogacz, S. A., Bossi, H. J., Brandenburg, J. D., Brash, E. J., Briceño, R. A., Briscoe, W. J., Brodsky, S. J., Brown, D. A., Burkert, V. D., Caines, H., Cali, I. A., Camsonne, A., Carman, D. S., Caylor, J., Cerci, S., Llatas, M. Chamizo, Chatterjee, S., Chen, J. P., Chen, Y., Chen, Y. -C., Chien, Y. -T., Chou, P. -C., Chu, X., Chudakov, E., Cline, E., Cloët, I. C., Cole, P. L., Connors, M. E., Constantinou, M., Cosyn, W., Dusa, S. Covrig, Cruz-Torres, R., D'Alesio, U., da Silva, C., Davoudi, Z., Dean, C. T., Dean, D. J., Demarteau, M., Deshpande, A., Detmold, W., Deur, A., Devkota, B. R., Dhital, S., Diefenthaler, M., Dobbs, S., Döring, M., Dong, X., Dotel, R., Dow, K. A., Downie, E. J., Drachenberg, J. L., Dumitru, A., Dunlop, J. C., Dupre, R., Durham, J. M., Dutta, D., Edwards, R. G., Ehlers, R. J., Fassi, L. El, Elaasar, M., Elouadrhiri, L., Engelhardt, M., Ent, R., Esumi, S., Evdokimov, O., Eyser, O., Fanelli, C., Fatemi, R., Fernando, I. P., Flor, F. A., Fomin, N., Frawley, A. D., Frederico, T., Fries, R. J., Gal, C., Gamage, B. R., Gamberg, L., Gao, H., Gaskell, D., Geurts, F., Ghandilyan, Y., Ghimire, N., Gilman, R., Gleason, C., Gnanvo, K., Gothe, R. W., Greene, S. V., Grießhammer, H. W., Grossberndt, S. K., Grube, B., Hackett, D. C., Hague, T. J., Hakobyan, H., Hansen, J. -O., Hatta, Y., Hattawy, M., Havener, L. B., Hen, O., Henry, W., Higinbotham, D. W., Hobbs, T. J., Hodges, A. M., Holmstrom, T., Hong, B., Horn, T., Howell, C. R., Huang, H. Z., Huang, M., Huang, S., Huber, G. M., Hyde, C. E., Isupov, E. L., Jacobs, P. M., Jalilian-Marian, J., Jentsch, A., Jheng, H., Ji, C. -R., Ji, X., Jia, J., Jones, D. C., Jones, M. K., Kalantarians, N., Kalicy, G., Kang, Z. B., Karthein, J. M., Keller, D., Keppel, C., Khachatryan, V., Kharzeev, D. E., Kim, H., Kim, M., Kim, Y., King, P. M., Kinney, E., Klein, S. R., Ko, H. S., Koch, V., Kohl, M., Kovchegov, Y. V., Krintiras, G. K., Kubarovsky, V., Kuhn, S. E., Kumar, K. S., Kutz, T., Lajoie, J. G., Lauret, J., Lavrukhin, I., Lawrence, D., Lee, J. H., Lee, K., Lee, S., Lee, Y. -J., Li, S., Li, W., Li, Xiaqing, Li, Xuan, Liao, J., Lin, H. -W., Lisa, M. A., Liu, K. -F., Liu, M. X., Liu, T., Liuti, S., Liyanage, N., Llope, W. J., Loizides, C., Longo, R., Lorenzon, W., Lunkenheimer, S., Luo, X., Ma, R., McKinnon, B., Meekins, D. G., Mehtar-Tani, Y., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z. -E., Michaels, R., Michel, J. K. L., Milner, R. G., Mkrtchyan, H., Mohanmurthy, P., Mohanty, B., Mokeev, V. I., Moon, D. H., Mooney, I. A., Morningstar, C., Morrison, D. P., Müller, B., Mukherjee, S., Mulligan, J., Camacho, C. Munoz, Quijada, J. A. Murillo, Murray, M. J., Nadeeshani, S. A., Nadel-Turonski, P., Nam, J. D., Nattrass, C. E., Nijs, G., Noronha, J., Noronha-Hostler, J., Novitzky, N., Nycz, M., Olness, F. I., Osborn, J. D., Pak, R., Pandey, B., Paolone, M., Papandreou, Z., Paquet, J. -F., Park, S., Paschke, K. D., Pasquini, B., Pasyuk, E., Patel, T., Patton, A., Paudel, C., Peng, C., Peng, J. C., Da Costa, H. Pereira, Perepelitsa, D. V., Peters, M. J., Petreczky, P., Pisarski, R. D., Pitonyak, D., Ploskon, M. A., Posik, M., Poudel, J., Pradhan, R., Prokudin, A., Pruneau, C. A., Puckett, A. J. R., Pujahari, P., Putschke, J., Pybus, J. R., Qiu, J. -W., Rajagopal, K., Ratti, C., Read, K. F., Reed, R., Richards, D. G., Riedl, C., Ringer, F., Rinn, T., West, J. Rittenhouse, Roche, J., Rodas, A., Roland, G., Romero-López, F., Rossi, P., Rostomyan, T., Ruan, L., Ruimi, O. M., Saha, N. R., Sahoo, N. R., Sakaguchi, T., Salazar, F., Salgado, C. W., Salmè, G., Salur, S., Santiesteban, S. N., Sargsian, M. M., Sarsour, M., Sato, N., Satogata, T., Sawada, S., Schäfer, T., Scheihing-Hitschfeld, B., Schenke, B., Schindler, S. T., Schmidt, A., Seidl, R., Shabestari, M. H., Shanahan, P. E., Shen, C., Sheng, T. -A., Shepherd, M. R., Sickles, A. M., Sievert, M. D., Smith, K. L., Song, Y., Sorensen, A., Souder, P. A., Sparveris, N., Srednyak, S., Leiton, A. G. Stahl, Stasto, A. M., Steinberg, P., Stepanyan, S., Stephanov, M., Stevens, J. R., Stewart, D. J., Stewart, I. W., Stojanovic, M., Strakovsky, I., Strauch, S., Strickland, M., Cerci, D. Sunar, Suresh, M., Surrow, B., Syritsyn, S., Szczepaniak, A. P., Tadepalli, A. S., Tang, A. H., Takaki, J. D. Tapia, Tarnowsky, T. J., Tawfik, A. N., Taylor, M. I., Tennant, C., Thiel, A., Thomas, D., Tian, Y., Timmins, A. R., Tribedy, P., Tu, Z., Tuo, S., Ullrich, T., Umaka, E., Upton, D. W., Vary, J. P., Velkovska, J., Venugopalan, R., Vijayakumar, A., Vitev, I., Vogelsang, W., Vogt, R., Vossen, A., Voutier, E., Vovchenko, V., Walker-Loud, A., Wang, F., Wang, J., Wang, X., Wang, X. -N., Weinstein, L. B., Wenaus, T. J., Weyhmiller, S., Wissink, S. W., Wojtsekhowski, B., Wong, C. P., Wood, M. H., Wunderlich, Y., Wyslouch, B., Xiao, B. W., Xie, W., Xiong, W., Xu, N., Xu, Q. H., Xu, Z., Yaari, D., Yao, X., Ye, Z., Ye, Z. H., Yero, C., Yuan, F., Zajc, W. A., Zhang, C., Zhang, J., Zhao, F., Zhao, Y., Zhao, Z. W., Zheng, X., Zhou, J., and Zurek, M.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment ,Nuclear Theory - Abstract
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research., Comment: QCD Town Meeting White Paper, as submitted to 2023 NSAC LRP committee on Feb. 28, 2023
- Published
- 2023
- Full Text
- View/download PDF
20. Rb-Sr and Pb-Pb geochronological studies on the granite gneisses of kuilapal, purulia-bankura midnapore districts, West Bengal
- Author
-
Sastry, D. V. L. N, Pandey, U. K, and Pandey, B. K.
- Published
- 2013
21. Genetic polymorphism in Indian strains of Xanthomonas campestris pv. mangiferaeindicae, mango bacterial canker disease pathogen
- Author
-
Mishra, Rupesh Kumar, Pandey, B. K., Pandey, Ashutosh, Muthukumar, M, and Kishun, R.
- Published
- 2012
22. Variety VL Mandua 379
- Author
-
Sood, Salej, Gupta, Arun, Khulbe, R. K., Pandey, B. M., Chandrashekara, C., Rajashekara, H., Bisht, G. S., Panchpal, D. S., and Kanwal, R. S.
- Published
- 2018
23. New Age FTAs and Options for India
- Author
-
Pandey, B. K.
- Published
- 2010
24. Role of Fuelwood in Sustainable Livelihood Security of Tribal Community of Kinnaur District, Himachal Pradesh, India
- Author
-
Maurya, Rajan, Yadav, Ganesh, Pandey, B. W., Negi, V. S., Moran, Emilio F., Series Editor, Raj Singh, Bhanwar Vishvendra, editor, and Batar, Amit Kumar, editor
- Published
- 2024
- Full Text
- View/download PDF
25. A Systematic Review on Application of Electrokinetics in Treatment of Problematic Soils
- Author
-
Shukla, C., Pandey, B. K., di Prisco, Marco, Series Editor, Chen, Sheng-Hong, Series Editor, Vayas, Ioannis, Series Editor, Kumar Shukla, Sanjay, Series Editor, Sharma, Anuj, Series Editor, Kumar, Nagesh, Series Editor, Wang, Chien Ming, Series Editor, Cui, Zhen-Dong, Series Editor, Jose, Babu T., editor, Sahoo, Dipak Kumar, editor, Shukla, Sanjay Kumar, editor, Krishna, A. Murali, editor, Thomas, Jimmy, editor, and Veena, V., editor
- Published
- 2024
- Full Text
- View/download PDF
26. Effect of Construction Parameters on the Behaviour of Embankment Resting Over Soft Soil Improved with ESC
- Author
-
Pandey, B. K., Rajesh, S., Chandra, S., Dogra, V. K., di Prisco, Marco, Series Editor, Chen, Sheng-Hong, Series Editor, Vayas, Ioannis, Series Editor, Kumar Shukla, Sanjay, Series Editor, Sharma, Anuj, Series Editor, Kumar, Nagesh, Series Editor, Wang, Chien Ming, Series Editor, Cui, Zhen-Dong, Series Editor, Jose, Babu T., editor, Sahoo, Dipak Kumar, editor, Shukla, Sanjay Kumar, editor, Krishna, A. Murali, editor, Thomas, Jimmy, editor, and Veena, V., editor
- Published
- 2024
- Full Text
- View/download PDF
27. Studies on the effect of fertilizer doses and row spacing on growth and yield of chickpea (Cicer arietinum L)
- Author
-
Lodhi, M. D., Singh, U. P., Pandey, B. K., Verma, N. K., and Singh, Varun
- Published
- 2007
28. Revealing the short-range structure of the 'mirror nuclei' $^3$H and $^3$He
- Author
-
Li, S., Cruz-Torres, R., Santiesteban, N., Ye, Z. H., Abrams, D., Alsalmi, S., Androic, D., Aniol, K., Arrington, J., Averett, T., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J., Chen, J-P., Chrisman, D., Christy, M. E., Clarke, C., Covrig, S., Craycraft, K., Day, D., Dutta, D., Fuchey, E., Gal, C., Garibaldi, F., Gautam, T. N., Gogami, T., Gomez, J., Guèye, P., Habarakada, A., Hague, T. J., Hansen, J. O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holt, R. J., Hyde, C., Itabashi, T., Kaneta, M., Karki, A., Katramatou, A. T., Keppel, C. E., Khachatryan, M., Khachatryan, V., King, P. M., Korover, I., Kurbany, L., Kutz, T., Lashley-Colthirst, N., Li, W. B., Liu, H., Liyanage, N., Long, E., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Beck, S. Mey-Tal, Michaels, R., Mihovilovič, M., Moyer, A., Nagao, S., Nelyubin, V., Nguyen, D., Nycz, M., Olson, M., Ou, L., Owen, V., Palatchi, C., Pandey, B., Papadopoulou, A., Park, S., Paul, S., Petkovic, T., Pomatsalyuk, R., Premathilake, S., Punjabi, V., Ransome, R. D., Reimer, P. E., Reinhold, J., Riordan, S., Roche, J., Rodriguez, V. M., Schmidt, A., Schmookler, B., Segarra, E. P., Shahinyan, A., Slifer, K., Solvignon, P., Širca, S., Su, T., Suleiman, R., Szumila-Vance, H., Tang, L., Tian, Y., Tireman, W., Tortorici, F., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Nuclear Theory - Abstract
When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough together to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly-energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure and mapping out the strength and isospin structure (neutron-proton vs proton-proton pairs) of these virtual excitations is thus critical input for modeling a range of nuclear, particle, and astrophysics measurements. Hitherto measurements used two-nucleon knockout or ``triple-coincidence'' reactions to measure the relative contribution of np- and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurementsshow that SRCs are almost exclusively np pairs, but had limited statistics and required large model-dependent final-state interaction (FSI) corrections. We report on the first measurement using inclusive scattering from the mirror nuclei $^3$H and $^3$He to extract the np/pp ratio of SRCs in the A=3 system. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a dramatic deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for $^3$He and $^3$H. Understanding these results will improve our understanding of the short-range part of the N-N interaction.
- Published
- 2022
- Full Text
- View/download PDF
29. Determination of the titanium spectral function from (e,e'p) data
- Author
-
Jiang, L., Ankowski, A. M., Abrams, D., Gu, L., Aljawrneh, B., Alsalmi, S., Bane, J., Batz, A., Barcus, S., Barroso, M., Bellini, V., Benhar, O., Bericic, J., Biswas, D., Camsonne, A., Castellanos, J., Chen, J. -P., Christy, M. E., Craycraft, K., Cruz-Torres, R., Dai, H., Day, D., Dirican, A., Dusa, S. -C., Fuchey, E., Gautam, T., Giusti, C., Gomez, J., Gu, C., Hague, T. J., Hansen, J. -O., Hauenstein, F., Higinbotham, D. W., Hyde, C., Jerzyk, Z., Johnson, A. M., Keppel, C., Lanham, C., Li, S., Lindgren, R., Liu, H., Mariani, C., McClellan, R. E., Meekins, D., Michaels, R., Mihovilovic, M., Murphy, M., Nguyen, D., Nycz, M., Ou, L., Pandey, B., Pandey, V., Park, K., Perera, G., Puckett, A. J. R., Santiesteban, S. N., Širca, S., Su, T., Tang, L., Tian, Y., Ton, N., Wojtsekhowski, B., Wood, S., Ye, Z., and Zhang, J.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Nuclear Theory - Abstract
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the (e,e'p) cross section in parallel kinematics using a natural titanium target. Here, we report the full results of the analysis of the data set corresponding to beam energy 2.2 GeV, and spanning the missing momentum and missing energy range 15 <= pm <= 250 MeV/c and 12 <= Em <= 80 MeV. The reduced cross section has been measured with ~7% accuracy as function of both missing momentum and missing energy. We compared our data to the results of a Monte Carlo simulations performed using a model spectral function and including the effects of final state interactions. The overall agreement between data and simulations is quite good (chi2/d.o.f. = 0.9)., Comment: 6 pages, 4 figures, published in Phys. Rev. D. arXiv admin note: substantial text overlap with arXiv:2203.01748
- Published
- 2022
- Full Text
- View/download PDF
30. First Measurement of the EMC Effect in $^{10}$B and $^{11}$B
- Author
-
Karki, A., Biswas, D., Gonzalez, F. A., Henry, W., Morean, C., Nadeeshani, A., Sun, A., Abrams, D., Ahmed, Z., Aljawrneh, B., Alsalmi, S., Ambrose, R., Androic, D., Armstrong, W., Arrington, J., Asaturyan, A., Assumin-Gyimah, K., Gayoso, C. Ayerbe, Bandari, A., Bane, J., Barrow, J., Basnet, S., Berdnikov, V., Bhatt, H., Bhetuwal, D., Boeglin, W. U., Bosted, P., Brash, E., Bukhari, M. H. S., Chen, H., Chen, J. P., Chen, M., Christy, M. E., Covrig, S., Craycraft, K., Danagoulian, S., Day, D., Diefenthaler, M., Dlamini, M., Dunne, J., Duran, B., Dutta, D., Elliott, C., Ent, R., Fenker, H., Fomin, N., Fuchey, E., Gaskell, D., Gautam, T. N., Hansen, J. O., Hauenstein, F., Hernandez, A. V., Horn, T., Huber, G. M., Jones, M. K., Joosten, S., Kabir, M. L., Kalantarians, N., Keppel, C., Khanal, A., King, P. M., Kinney, E., Ko, H. S., Kohl, M., Lashley-Colthirst, N., Li, S., Li, W. B., Liyanage, A. H., Mack, D., Malace, S., Markowitz, P., Matter, J., Meekins, D., Michaels, R., Mkrtchyan, A., Mkrtchyan, H., Nanda, S., Nguyen, D., Niculescu, G., Niculescu, I., Nuruzzaman, Pandey, B., Park, S., Pooser, E., Puckett, A. J. R., Rehfuss, M., Reinhold, J., Santiesteban, N., Sawatzky, B., Smith, G. R., Szumila-Vance, H., Tadepalli, A. S., Tadevosyan, V., Trotta, R., Wood, S. A., Yero, C., and Zhang, J.
- Subjects
Nuclear Experiment - Abstract
The nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in $^{10}$B and $^{11}$B. Previous measurements of the EMC effect in $A \leq 12$ nuclei showed an unexpected nuclear dependence; $^{10}$B and $^{11}$B were measured to explore the EMC effect in this region in more detail. Results are presented for $^9$Be, $^{10}$B, $^{11}$B, and $^{12}$C at an incident beam energy of 10.6~GeV. The EMC effect in the boron isotopes was found to be similar to that for $^9$Be and $^{12}$C, yielding almost no nuclear dependence in the EMC effect in the range $A=4-12$. This represents important, new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei., Comment: To appear in PRC
- Published
- 2022
31. Determination of the titanium spectral function from (e, e′p) data
- Author
-
Jiang, L, Ankowski, AM, Abrams, D, Gu, L, Aljawrneh, B, Alsalmi, S, Bane, J, Batz, A, Barcus, S, Barroso, M, Bellini, V, Benhar, O, Bericic, J, Biswas, D, Camsonne, A, Castellanos, J, Chen, J-P, Christy, ME, Craycraft, K, Cruz-Torres, R, Dai, H, Day, D, Dirican, A, Dusa, S-C, Fuchey, E, Gautam, T, Giusti, C, Gomez, J, Gu, C, Hague, TJ, Hansen, J-O, Hauenstein, F, Higinbotham, DW, Hyde, C, Jerzyk, Z, Johnson, AM, Keppel, C, Lanham, C, Li, S, Lindgren, R, Liu, H, Mariani, C, McClellan, RE, Meekins, D, Michaels, R, Mihovilovic, M, Murphy, M, Nguyen, D, Nycz, M, Ou, L, Pandey, B, Pandey, V, Park, K, Perera, G, Puckett, AJR, Santiesteban, SN, Širca, S, Su, T, Tang, L, Tian, Y, Ton, N, Wojtsekhowski, B, Wood, S, Ye, Z, and Zhang, J
- Subjects
Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the (e,e′p) cross section in parallel kinematics using a natural titanium target. In this paper, we report the analysis of the dataset obtained in different kinematics for our solid natural titanium target. Data were obtained in a range of missing momentum and missing energy between 15?pm?250 MeV/c and 12?Em?80 MeV, respectively, and using an electron beam energy of 2.2 GeV. We measured the reduced cross section with ∼7% accuracy as a function of both missing momentum and missing energy. Our Monte Carlo simulation, including both a model spectral function and the effects of final-state interactions, satisfactorily reproduces the data.
- Published
- 2023
32. Effect of phosphorus and gypsum levels on growth and yield of mustard (Brassica juncea coss) variety ‘Varuna'
- Author
-
Singh, Varun, Singh, U. P., Lodhi, M. D., Pandey, B. K., and Verma, N. K.
- Published
- 2007
33. Constraints on the onset of color transparency from quasi-elastic $^{12}$C$(e,e'p)$ up to $Q^2=\,14.2\,$(GeV$/c)^2$
- Author
-
Bhetuwal, D., Matter, J., Szumila-Vance, H., Gayoso, C. Ayerbe, Kabir, M. L., Dutta, D., Ent, R., Abrams, D., Ahmed, Z., Aljawrneh, B., Alsalmi, S., Ambrose, R., Androic, D., Armstrong, W., Asaturyan, A., Assumin-Gyimah, K., Bandari, A., Basnet, S., Berdnikov, V., Bhatt, H., Biswas, D., Boeglin, W. U., Bosted, P., Brash, E., Bukhari, M. H. S., Chen, H., Chen, J. P., Chen, M., Christy, E. M., Covrig, S., Craycraft, K., Danagoulian, S., Day, D., Diefenthaler, M., Dlamini, M., Dunne, J., Duran, B., Evans, R., Fenker, H., Fomin, N., Fuchey, E., Gaskell, D., Gautam, T. N., Gonzalez, F. A., Hansen, J. O., Hauenstein, F., Hernandez, A. V., Horn, T., Huber, G. M., Jones, M. K., Joosten, S., Karki, A., Keppel, C., Khanal, A., King, P. M., Kinney, E., Ko, H. S., Kohl, M., Lashley-Colthirst, N., Li, S., Li, W. B., Liyanage, A. H., Mack, D., Malace, S., Markowitz, P., Meekins, D., Michaels, R., Mkrtchyan, A., Mkrtchyan, H., Nazeer, S. J., Nanda, S., Niculescu, G., Niculescu, I., Nguyen, D., Nuruzzaman, Pandey, B., Park, S., Pooser, E., Puckett, A., Rehfuss, M., Reinhold, J., Santiesteban, N., Sawatzky, B., Smith, G. R., Sun, A., Tadevosyan, V., Trotta, R., Wood, S. A., Yero, C., and Zhang, J.
- Subjects
Nuclear Experiment - Abstract
Quasi-elastic scattering on $^{12}$C$(e,e'p)$ was measured in Hall C at Jefferson Lab for space-like 4-momentum transfer squared $Q^2$ in the range of 8--14.2\,(GeV/$c$)$^2$ with proton momenta up to 8.3\,GeV/$c$. The experiment was carried out in the upgraded Hall C at Jefferson Lab. It used the existing high momentum spectrometer and the new super high momentum spectrometer to detect the scattered electrons and protons in coincidence. The nuclear transparency was extracted as the ratio of the measured yield to the yield calculated in the plane wave impulse approximation. Additionally, the transparency of the $1s_{1/2}$ and $1p_{3/2}$ shell protons in $^{12}$C was extracted, and the asymmetry of the missing momentum distribution was examined for hints of the quantum chromodynamics prediction of Color Transparency. All of these results were found to be consistent with traditional nuclear physics and inconsistent with the onset of Color Transparency.
- Published
- 2022
- Full Text
- View/download PDF
34. Precision Determination of the Neutral Weak Form Factor of $^{48}$Ca
- Author
-
Adhikari, D., Albataineh, H., Androic, D., Aniol, K. A., Armstrong, D. S., Averett, T., Gayoso, C. Ayerbe, Barcus, S. K., Bellini, V., Beminiwattha, R. S., Benesch, J. F., Bhatt, H., Pathak, D. Bhatta, Bhetuwal, D., Blaikie, B., Boyd, J., Campagna, Q., Camsonne, A., Cates, G. D., Chen, Y., Clarke, C., Cornejo, J. C., Dusa, S. Covrig, Dalton, M. M., Datta, P., Deshpande, A., Dutta, D., Feldman, C., Fuchey, E., Gal, C., Gaskell, D., Gautam, T., Gericke, M., Ghosh, C., Halilovic, I., Hansen, J. -O., Hassan, O., Hauenstein, F., Henry, W., Horowitz, C. J., Jantzi, C., Jian, S., Johnston, S., Jones, D. C., Kakkar, S., Katugampola, S., Keppel, C., King, P. M., King, D. E., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Leverick, G., Liu, H., Liyanage, N., Mammei, J., Mammei, R., McCaughan, 23 M., McNulty, D., Meekins, D., Metts, C., Michaels, R., Mihovilovic, M., Mondal, M. M., Napolitano, J., Narayan, A., Nikolaev, D., Owen, V., Palatchi, C., Pan, J., Pandey, B., Park, S., Paschke, K. D., Petrusky, M., Pitt, M. L., Premathilake, S., Quinn, B., Radloff, R., Rahman, S., Rashad, M. N. H., Rathnayake, A., Reed, B. T., Reimer, P. E., Richards, R., Riordan, S., Roblin, Y. R., Seeds, S., Shahinyan, A., Souder, P., Thiel, M., Tian, Y., Urciuoli, G. M., Wertz, E. W., Wojtsekhowski, B., Yale, B., Ye, T., Yoon, A., Xiong, W., Zec, A., Zhang, W., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
We report a precise measurement of the parity-violating asymmetry $A_{\rm PV}$ in the elastic scattering of longitudinally polarized electrons from $^{48}{\rm Ca}$. We measure $A_{\rm PV} =2668\pm 106\ {\rm (stat)}\pm 40\ {\rm (syst)}$ parts per billion, leading to an extraction of the neutral weak form factor $F_{\rm W} (q=0.8733$ fm$^{-1}) = 0.1304 \pm 0.0052 \ {\rm (stat)}\pm 0.0020\ {\rm (syst)}$ and the charge minus the weak form factor $F_{\rm ch} - F_{\rm W} = 0.0277\pm 0.0055$. The resulting neutron skin thickness $R_n-R_p=0.121 \pm 0.026\ {\rm (exp)} \pm 0.024\ {\rm (model)}$~fm is relatively thin yet consistent with many model calculations. The combined CREX and PREX results will have implications for future energy density functional calculations and on the density dependence of the symmetry energy of nuclear matter., Comment: 8 pages, 5 figures Replace 6-16-22: included ancillary files, corrected errors in references, author affiliations. Small text changes for clarity
- Published
- 2022
- Full Text
- View/download PDF
35. The non-ideal finite Larmor radius effect in the solar atmosphere
- Author
-
Pandey, B. P. and Wardle, Mark
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
The dynamics of the partially ionized solar atmosphere is controlled by the frequent collision and charge exchange between the predominant neutral Hydrogen atoms and charged ions. At signal frequencies below or of the order of either of the collision or charge exchange frequencies the magnetic stress is {\it felt} by both the charged and neutral particles simultaneously. The resulting neutral-mass loading of the ions leads to the rescaling of the effective ion-cyclotron frequency-it becomes the Hall frequency, and the resultant effective Larmor radius becomes of the order of few kms. Thus the finite Larmor radius (FLR) effect which manifests as the ion and neutral pressure stress tensors operates over macroscopic scales. Whereas parallel and perpendicular (with respect to the magnetic field) viscous momentum transport competes with the Ohm and Hall diffusion of the magnetic field in the photosphere-chromosphre, the gyroviscous effect becomes important only in the transition region between the chromosphere and corona, where it competes with the ambipolar diffusion. The wave propagation in the gyroviscous effect dominated medium depends on the plasma $\beta$ (a ratio of the thermal and magnetic energies). The abundance of free energy makes gyro waves unstable with the onset condition exactly opposite of the Hall instability. However, the maximum growth rate is identical to the Hall instability. For a flow gradient $\sim 0.1 \,\mbox{s}^{-1}$ the instability growth time is one minute. Thus, the transition region may become subject to this fast growing, gyroviscous instability., Comment: 17 pages, 12 figures, MNRAS (in press)
- Published
- 2022
- Full Text
- View/download PDF
36. Determination of the argon spectral function from (e,e'p) data
- Author
-
Jiang, L., Ankowski, A. M., Abrams, D., Gu, L., Aljawrneh, B., Alsalmi, S., Bane, J., Batz, A., Barcus, S., Barroso, M., Bellini, V., Benhar, O., Bericic, J., Biswas, D., Camsonne, A., Castellanos, J., Chen, J. -P., Christy, M. E., Craycraft, K., Cruz-Torres, R., Dai, H., Day, D., Dirican, A., Dusa, S. -C., Fuchey, E., Gautam, T., Giusti, C., Gomez, J., Gu, C., Hague, T. J., Hansen, J. -O., Hauenstein, F., Higinbotham, D. W., Hyde, C., Jerzyk, Z., Keppel, C., Li, S., Lindgren, R., Liu, H., Mariani, C., McClellan, R. E., Meekins, D., Michaels, R., Mihovilovic, M., Murphy, M., Nguyen, D., Nycz, M., Ou, L., Pandey, B., Pandey, V., Park, K., Perera, G., Puckett, A. J. R., Santiesteban, S. N., Širca, S., Su, T., Tang, L., Tian, Y., Ton, N., Wojtsekhowski, B., Wood, S., Ye, Z., and Zhang, J.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the $(e, e'p)$ cross section in parallel kinematics using a natural argon target. Here, we report the full results of the analysis of the data set corresponding to beam energy 2.222 GeV, and spanning the missing momentum and missing energy range $15 \lesssim p_m \lesssim 300$ MeV/c and $12 \lesssim E_m \lesssim 80$ MeV. The reduced cross section, determined as a function of $p_m$ and $E_m$ with $\approx$4\% accuracy, has been fitted using the results of Monte Carlo simulations involving a model spectral function and including the effects of final state interactions. The overall agreement between data and simulations turns out to be quite satisfactory ($\chi^2$/n.d.o.f.=1.9). The resulting spectral function will provide valuable new information, needed for the interpretation of neutrino interactions in liquid argon detectors., Comment: Published version
- Published
- 2022
- Full Text
- View/download PDF
37. Revealing the short-range structure of the mirror nuclei 3H and 3He
- Author
-
Li, S, Cruz-Torres, R, Santiesteban, N, Ye, ZH, Abrams, D, Alsalmi, S, Androic, D, Aniol, K, Arrington, J, Averett, T, Gayoso, C Ayerbe, Bane, J, Barcus, S, Barrow, J, Beck, A, Bellini, V, Bhatt, H, Bhetuwal, D, Biswas, D, Bulumulla, D, Camsonne, A, Castellanos, J, Chen, J, Chen, J-P, Chrisman, D, Christy, ME, Clarke, C, Covrig, S, Craycraft, K, Day, D, Dutta, D, Fuchey, E, Gal, C, Garibaldi, F, Gautam, TN, Gogami, T, Gomez, J, Guèye, P, Habarakada, A, Hague, TJ, Hansen, JO, Hauenstein, F, Henry, W, Higinbotham, DW, Holt, RJ, Hyde, C, Itabashi, T, Kaneta, M, Karki, A, Katramatou, AT, Keppel, CE, Khachatryan, M, Khachatryan, V, King, PM, Korover, I, Kurbany, L, Kutz, T, Lashley-Colthirst, N, Li, WB, Liu, H, Liyanage, N, Long, E, Mammei, J, Markowitz, P, McClellan, RE, Meddi, F, Meekins, D, Beck, S Mey-Tal, Michaels, R, Mihovilovič, M, Moyer, A, Nagao, S, Nelyubin, V, Nguyen, D, Nycz, M, Olson, M, Ou, L, Owen, V, Palatchi, C, Pandey, B, Papadopoulou, A, Park, S, Paul, S, Petkovic, T, Pomatsalyuk, R, Premathilake, S, Punjabi, V, Ransome, RD, Reimer, PE, Reinhold, J, Riordan, S, Roche, J, Rodriguez, VM, Schmidt, A, Schmookler, B, Segarra, EP, Shahinyan, A, Slifer, K, Solvignon, P, and Širca, S
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,General Science & Technology - Abstract
When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure1-3, and mapping out the strength and the isospin structure (neutron-proton (np) versus proton-proton (pp) pairs) of these virtual excitations is thus critical input for modelling a range of nuclear, particle and astrophysics measurements3-5. Two-nucleon knockout or 'triple coincidence' reactions have been used to measure the relative contribution of np-SRCs and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurements6-8 have shown that SRCs are almost exclusively np pairs, but they had limited statistics and required large model-dependent final-state interaction corrections. Here we report on measurements using inclusive scattering from the mirror nuclei hydrogen-3 and helium-3 to extract the np/pp ratio of SRCs in systems with a mass number of three. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a marked deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for hydrogen-3 and helium-3. Understanding these results will improve our understanding of the short-range part of the nucleon-nucleon interaction.
- Published
- 2022
38. Deeply virtual Compton scattering cross section at high Bjorken $x_B$
- Author
-
Georges, F., Rashad, M. N. H., Stefanko, A., Dlamini, M., Karki, B., Ali, S. F., Lin, P-J., Ko, H-S, Israel, N., Adikaram, D., Ahmed, Z., Albataineh, H., Aljawrneh, B., Allada, K., Allison, S., Alsalmi, S., Androic, D., Aniol, K., Annand, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Bartlett, K., Bellini, V., Beminiwattha, R., Bericic, J., Biswas, D., Brash, E., Bulumulla, D., Campbell, J., Camsonne, A., Carmignotto, M., Castellano, J., Chen, C., Chen, J-P., Chetry, T., Christy, M. E., Cisbani, E., Clary, B., Cohen, E., Compton, N., Cornejo, J. C., Dusa, S. Covrig, Crowe, B., Danagoulian, S., Danley, T., De Persio, F., Deconinck, W., Defurne, M., Desnault, C., Di, D., Duer, M., Duran, B., Ent, R., Fanelli, C., Franklin, G., Fuchey, E., Gal, C., Gaskell, D., Gautam, T., Glamazdin, O., Gnanvo, K., Gray, V. M., Gu, C., Hague, T., Hamad, G., Hamilton, D., Hamilton, K., Hansen, O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holmstrom, T., Horn, T., Huang, Y., Huber, G. M., Hyde, C., Ibrahim, H., Jen, C-M., Jin, K., Jones, M., Kabir, A., Keppel, C., Khachatryan, V., King, P. M., Li, S., Li, W. B., Liu, J., Liu, H., Liyanage, A., Magee, J., Malace, S., Mammei, J., Markowitz, P., McClellan, E., Mazouz, M., Meddi, F., Meekins, D., Mesik, K., Michaels, R., Mkrtchyan, A., Montgomery, R., Camacho, C. Muñoz, Myers, L. S., Nadel-Turonski, P., Nazeer, S. J., Nelyubin, V., Nguyen, D., Nuruzzaman, N., Nycz, M., Obretch, O. F., Ou, L., Palatchi, C., Pandey, B., Park, S., Park, K., Peng, C., Pomatsalyuk, R., Pooser, E., Puckett, A. J. R., Punjabi, V., Quinn, B., Rahman, S., Reimer, P. E., Roche, J., Sapkota, I., Sarty, A., Sawatzky, B., Saylor, N. H., Schmookler, B., Shabestari, M. H., Shahinyan, A., Sirca, S., Smith, G. R., Sooriyaarachchilage, S., Sparveris, N., Spies, R., Su, T., Subedi, A., Sulkosky, V., Sun, A., Thorne, L., Tian, Y., Ton, N., Tortorici, F., Trotta, R., Urciuoli, G. M., Voutier, E., Waidyawansa, B., Wang, Y., Wojtsekhowski, B., Wood, S., Yan, X., Ye, L., Ye, Z., Yero, C., Zhang, J., Zhao, Y., and Zhu, P.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report high-precision measurements of the Deeply Virtual Compton Scattering (DVCS) cross section at high values of the Bjorken variable $x_B$. DVCS is sensitive to the Generalized Parton Distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton Form Factors (CFFs) of the nucleon as a function of $x_B$, while systematically including helicity flip amplitudes. In particular, the high accuracy of the present data demonstrates sensitivity to some very poorly known CFFs.
- Published
- 2022
- Full Text
- View/download PDF
39. Determination of the argon spectral function from (e,e′p) data
- Author
-
Jiang, L, Ankowski, AM, Abrams, D, Gu, L, Aljawrneh, B, Alsalmi, S, Bane, J, Batz, A, Barcus, S, Barroso, M, Bellini, V, Benhar, O, Bericic, J, Biswas, D, Camsonne, A, Castellanos, J, Chen, J-P, Christy, ME, Craycraft, K, Cruz-Torres, R, Dai, H, Day, D, Dirican, A, Dusa, S-C, Fuchey, E, Gautam, T, Giusti, C, Gomez, J, Gu, C, Hague, TJ, Hansen, J-O, Hauenstein, F, Higinbotham, DW, Hyde, C, Jerzyk, Z, Keppel, C, Li, S, Lindgren, R, Liu, H, Mariani, C, McClellan, RE, Meekins, D, Michaels, R, Mihovilovic, M, Murphy, M, Nguyen, D, Nycz, M, Ou, L, Pandey, B, Pandey, V, Park, K, Perera, G, Puckett, AJR, Santiesteban, SN, Širca, S, Su, T, Tang, L, Tian, Y, Ton, N, Wojtsekhowski, B, Wood, S, Ye, Z, and Zhang, J
- Subjects
Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the (e,e′p) cross section in parallel kinematics using a natural argon target. Here, we report the full results of the analysis of the data set corresponding to beam energy 2.222 GeV, and spanning the missing momentum and missing energy range 1 pm 300 MeV/c and 12 Em 80 MeV. The reduced cross section, determined as a function of pm and Em with ≈4% accuracy, has been fitted using the results of Monte Carlo simulations involving a model spectral function and including the effects of final state interactions. The overall agreement between data and simulations turns out to be quite satisfactory (χ2/d.o.f.=1.9). The resulting spectral function will provide valuable new information, needed for the interpretation of neutrino interactions in liquid argon detectors.
- Published
- 2022
40. New Measurements of the Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering Over a Range of Spin-0 Nuclei
- Author
-
PREX, Collaborations, CREX, Adhikari, D., Albataineh, H., Androic, D., Aniol, K., Armstrong, D. S., Averett, T., Gayoso, C. Ayerbe, Barcus, S., Bellini, V., Beminiwattha, R. S., Benesch, J. F., Bhatt, H., Pathak, D. Bhatta, Bhetuwal, D., Blaikie, B., Boyd, J., Campagna, Q., Camsonne, A., Cates, G. D., Chen, Y., Clarke, C., Cornejo, J. C., Dusa, S. Covrig, Dalton, M. M., Datta, P., Deshpande, A., Dutta, D., Feldman, C., Fuchey, E., Gal, C., Gaskell, D., Gautam, T., Gericke, M., Ghosh, C., Halilovic, I., Hansen, J. -O., Hauenstein, F., Henry, W., Horowitz, C. J., Jantzi, C., Jian, S., Johnston, S., Jones, D. C., Karki, B., Kakkar, S., Katugampola, S., Keppel, C. E., King, P. M., King, D. E., Knauss, M., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Leverick, G., Liu, H., Liyange, N., Malace, S., Mammei, J., Mammei, R., McCaughan, M., McNulty, D., Meekins, D., Metts, C., Michaels, R., Mihovilovic, M., Mondal, M. M., Napolitano, J., Nikolaev, D., Rashad, M. N. H., Owen, V., Palatchi, C., Pan, J., Pandey, B., Park, S., Paschke, K. D., Petrusky, M., Pitt, M. L., Premathilake, S., Puckett, A. J. R., Quinn, B., Radloff, R., Rahman, S., Rathnayake, A., Reed, B. T., Reimer, P. E., Richards, R., Riordan, S., Roblin, Y., Seeds, S., Shahinyan, A., Souder, P. A., Tang, L., Thiel, M., Tian, Y., Urciuoli, G. M., Wertz, E. W., Wojtsekhowski, B., Xiong, W., Yale, B., Ye, T., Zec, A., Zhang, W., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment - Abstract
We report precision determinations of the beam normal single spin asymmetries ($A_n$) in the elastic scattering of 0.95 and 2.18~GeV electrons off $^{12}$C, $^{40}$Ca, $^{48}$Ca, and $^{208}$Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of $A_n$ for $^{40}$Ca and $^{48}$Ca are found to be similar to that of $^{12}$C, consistent with expectations thus demonstrating the validity of theoretical calculations for nuclei with Z~$\leq20$. We also report $A_n$ for $^{208}$Pb at two new momentum transfers (Q$^2$) extending the previous measurement. Our new data confirm the surprising result previously reported, with all three data points showing significant disagreement with the results from the $Z\leq 20$ nuclei. These data confirm our basic understanding of the underlying dynamics that govern $A_n$ for nuclei containing $\lesssim 50$ nucleons, but point to the need for further investigation to understand the unusual $A_n$ behaviour discovered for scattering off $^{208}$Pb., Comment: 7 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
41. The cross-section measurement for the $^3{\textrm H}(e,e'K^+)nn\Lambda$ reaction
- Author
-
Suzuki, K. N., Gogami, T., Pandey, B., Itabashi, K., Nagao, S., Okuyama, K., Nakamura, S. N., Tang, L., Abrams, D., Akiyama, T., Androic, D., Aniol, K., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Camsonne, A., Castellanos, J., Chen, J-P., Chen, J., Covrig, S., Chrisman, D., Cruz-Torres, R., Das, R., Fuchey, E., Gnanvo, K., Garibaldi, F., Gautam, T., Gomez, J., Gueye, P., Hague, T. J., Hansen, O., Henry, W., Hauenstein, F., Higinbotham, D. W., Hyde, C. E., Kaneta, M., Keppel, C., Kutz, T., Lashley-Colthirst, N., Li, S., Liu, H., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Michaels, R., Mihovilovič, M., Moyer, A., Nguyen, D., Nycz, M., Owen, V., Palatchi, C., Park, S., Petkovic, T., Premathilake, S., Reimer, P. E., Reinhold, J., Riordan, S., Rodriguez, V., Samanta, C., Santiesteban, S. N., Sawatzky, B., Širca, S., Slifer, K., Su, T., Tian, Y., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S. A., Yale, B., Ye, Z., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
The small binding energy of the hypertrition leads to predictions of non-existence of bound hypernuclei for isotriplet three-body systems such as $nn\Lambda$. However, invariant mass spectroscopy at GSI has reported events that may be interpreted as the bound $nn\Lambda$ state. The $nn\Lambda$ state was sought by missing-mass spectroscopy via the $(e,e'K^+)$ reaction at Jefferson Lab's experimental Hall A. The present experiment has higher sensitivity to the $nn\Lambda$-state investigation in terms of better precision by a factor of about three. The analysis shown in this article focuses on the derivation of the reaction cross-section for the $^3{\rm{H}}(\gamma^{*},K^+)\textrm{X}$ reaction. Events that were detected in an acceptance, where a Monte Carlo simulation could reproduce the data well ($|\delta p/p| < 4\%$), were analyzed to minimize the systematic uncertainty. No significant structures were observed with the acceptance cuts, and the upper limits of the production cross-section of the $nn\Lambda$ state were obtained to be $21$ and $31~\rm{nb/sr}$ at the $90\%$ confidence level when theoretical predictions of $(-B_{\Lambda}, \Gamma) = (0.25,0.8)$ and $(0.55, 4.7)$ MeV, respectively, were assumed. The cross-section result provides valuable information for examining the existence of $nn\Lambda$., Comment: 27 pages, 12 figures
- Published
- 2021
- Full Text
- View/download PDF
42. The present and future of QCD
- Author
-
Achenbach, P., Adhikari, D., Afanasev, A., Afzal, F., Aidala, C.A., Al-bataineh, A., Almaalol, D.K., Amaryan, M., Androić, D., Armstrong, W.R., Arratia, M., Arrington, J., Asaturyan, A., Aschenauer, E.C., Atac, H., Avakian, H., Averett, T., Ayerbe Gayoso, C., Bai, X., Barish, K.N., Barnea, N., Basar, G., Battaglieri, M., Baty, A.A., Bautista, I., Bazilevsky, A., Beattie, C., Behera, S.C., Bellini, V., Bellwied, R., Benesch, J.F., Benmokhtar, F., Bernardes, C.A., Bernauer, J.C., Bhatt, H., Bhatta, S., Boer, M., Boettcher, T.J., Bogacz, S.A., Bossi, H.J., Brandenburg, J.D., Brash, E.J., Briceño, R.A., Briscoe, W.J., Brodsky, S.J., Brown, D.A., Burkert, V.D., Caines, H., Cali, I.A., Camsonne, A., Carman, D.S., Caylor, J., Cerci, D.S., Cerci, S., Chamizo Llatas, M., Chatterjee, S., Chen, J.P., Chen, Y., Chen, Y.-C., Chien, Y.-T., Chou, P.-C., Chu, X., Chudakov, E., Cline, E., Cloët, I.C., Cole, P.L., Connors, M.E., Constantinou, M., Cosyn, W., Covrig Dusa, S., Cruz-Torres, R., D'Alesio, U., da Silva, C., Davoudi, Z., Dean, C.T., Dean, D.J., Demarteau, M., Deshpande, A., Detmold, W., Deur, A., Devkota, B.R., Dhital, S., Diefenthaler, M., Dobbs, S., Döring, M., Dong, X., Dotel, R., Dow, K.A., Downie, E.J., Drachenberg, J.L., Dumitru, A., Dunlop, J.C., Dupre, R., Durham, J.M., Dutta, D., Edwards, R.G., Ehlers, R.J., El Fassi, L., Elaasar, M., Elouadrhiri, L., Engelhardt, M., Ent, R., Esumi, S., Evdokimov, O., Eyser, O., Fanelli, C., Fatemi, R., Fernando, I.P., Flor, F.A., Fomin, N., Frawley, A.D., Frederico, T., Fries, R.J., Gal, C., Gamage, B.R., Gamberg, L., Gao, H., Gaskell, D., Geurts, F., Ghandilyan, Y., Ghimire, N., Gilman, R., Gleason, C., Gnanvo, K., Gothe, R.W., Greene, S.V., Grießhammer, H.W., Grossberndt, S.K., Grube, B., Hackett, D.C., Hague, T.J., Hakobyan, H., Hansen, J.-O., Hatta, Y., Hattawy, M., Havener, L.B., Hen, O., Henry, W., Higinbotham, D.W., Hobbs, T.J., Hodges, A.M., Holmstrom, T., Hong, B., Horn, T., Howell, C.R., Huang, H.Z., Huang, M., Huang, S., Huber, G.M., Hyde, C.E., Isupov, E.L., Jacobs, P.M., Jalilian-Marian, J., Jentsch, A., Jheng, H., Ji, C.-R., Ji, X., Jia, J., Jones, D.C., Jones, M.K., Joosten, S., Kalantarians, N., Kalicy, G., Kang, Z.B., Karthein, J.M., Keller, D., Keppel, C., Khachatryan, V., Kharzeev, D.E., Kim, H., Kim, M., Kim, Y., King, P.M., Kinney, E., Klein, S.R., Ko, H.S., Koch, V., Kohl, M., Kovchegov, Y.V., Krintiras, G.K., Kubarovsky, V., Kuhn, S.E., Kumar, K.S., Kutz, T., Lajoie, J.G., Lauret, J., Lavrukhin, I., Lawrence, D., Lee, J.H., Lee, K., Lee, S., Lee, Y.-J., Li, S., Li, W., Li, Xiaqing, Li, Xuan, Liao, J., Lin, H.-W., Lisa, M.A., Liu, K.-F., Liu, M.X., Liu, T., Liuti, S., Liyanage, N., Llope, W.J., Loizides, C., Longo, R., Lorenzon, W., Lunkenheimer, S., Luo, X., Ma, R., McKinnon, B., Meekins, D.G., Mehtar-Tani, Y., Melnitchouk, W., Metz, A., Meyer, C.A., Meziani, Z.-E., Michaels, R., Michel, J.K.L., Milner, R.G., Mkrtchyan, H., Mohanmurthy, P., Mohanty, B., Mokeev, V.I., Moon, D.H., Mooney, I.A., Morningstar, C., Morrison, D.P., Müller, B., Mukherjee, S., Mulligan, J., Munoz Camacho, C., Murillo Quijada, J.A., Murray, M.J., Nadeeshani, S.A., Nadel-Turonski, P., Nam, J.D., Nattrass, C.E., Nijs, G., Noronha, J., Noronha-Hostler, J., Novitzky, N., Nycz, M., Olness, F.I., Osborn, J.D., Pak, R., Pandey, B., Paolone, M., Papandreou, Z., Paquet, J.-F., Park, S., Paschke, K.D., Pasquini, B., Pasyuk, E., Patel, T., Patton, A., Paudel, C., Peng, C., Peng, J.C., Pereira Da Costa, H., Perepelitsa, D.V., Peters, M.J., Petreczky, P., Pisarski, R.D., Pitonyak, D., Ploskon, M.A., Posik, M., Poudel, J., Pradhan, R., Prokudin, A., Pruneau, C.A., Puckett, A.J.R., Pujahari, P., Putschke, J., Pybus, J.R., Qiu, J.-W., Rajagopal, K., Ratti, C., Read, K.F., Reed, R., Richards, D.G., Riedl, C., Ringer, F., Rinn, T., Rittenhouse West, J., Roche, J., Rodas, A., Roland, G., Romero-López, F., Rossi, P., Rostomyan, T., Ruan, L., Ruimi, O.M., Saha, N.R., Sahoo, N.R., Sakaguchi, T., Salazar, F., Salgado, C.W., Salmè, G., Salur, S., Santiesteban, S.N., Sargsian, M.M., Sarsour, M., Sato, N., Satogata, T., Sawada, S., Schäfer, T., Scheihing-Hitschfeld, B., Schenke, B., Schindler, S.T., Schmidt, A., Seidl, R., Shabestari, M.H., Shanahan, P.E., Shen, C., Sheng, T.-A., Shepherd, M.R., Sickles, A.M., Sievert, M.D., Smith, K.L., Song, Y., Sorensen, A., Souder, P.A., Sparveris, N., Srednyak, S., Stahl Leiton, A.G., Stasto, A.M., Steinberg, P., Stepanyan, S., Stephanov, M., Stevens, J.R., Stewart, D.J., Stewart, I.W., Stojanovic, M., Strakovsky, I., Strauch, S., Strickland, M., Sunar Cerci, D., Suresh, M., Surrow, B., Syritsyn, S., Szczepaniak, A.P., Tadepalli, A.S., Tang, A.H., Tapia Takaki, J.D., Tarnowsky, T.J., Tawfik, A.N., Taylor, M.I., Tennant, C., Thiel, A., Thomas, D., Tian, Y., Timmins, A.R., Tribedy, P., Tu, Z., Tuo, S., Ullrich, T., Umaka, E., Upton, D.W., Vary, J.P., Velkovska, J., Venugopalan, R., Vijayakumar, A., Vitev, I., Vogelsang, W., Vogt, R., Vossen, A., Voutier, E., Vovchenko, V., Walker-Loud, A., Wang, F., Wang, J., Wang, X., Wang, X.-N., Weinstein, L.B., Wenaus, T.J., Weyhmiller, S., Wissink, S.W., Wojtsekhowski, B., Wong, C.P., Wood, M.H., Wunderlich, Y., Wyslouch, B., Xiao, B.W., Xie, W., Xiong, W., Xu, N., Xu, Q.H., Xu, Z., Yaari, D., Yao, X., Ye, Z., Ye, Z.H., Yero, C., Yuan, F., Zajc, W.A., Zhang, C., Zhang, J., Zhao, F., Zhao, Y., Zhao, Z.W., Zheng, X., Zhou, J., and Zurek, M.
- Published
- 2024
- Full Text
- View/download PDF
43. Discontinuities-Driven Slope Stability Assessment and Mineralogical Studies Along Mughal Road, Jammu and Kashmir, India
- Author
-
Ingale, R., Salroo, Suhail, and Pandey, B. K.
- Published
- 2024
- Full Text
- View/download PDF
44. Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states using the (e,e′K+) reaction with a tritium target
- Author
-
Pandey, B, Tang, L, Gogami, T, Suzuki, KN, Itabashi, K, Nagao, S, Okuyama, K, Nakamura, SN, Abrams, D, Afnan, IR, Akiyama, T, Androic, D, Aniol, K, Averett, T, Gayoso, C Ayerbe, Bane, J, Barcus, S, Barrow, J, Bellini, V, Bhatt, H, Bhetuwal, D, Biswas, D, Camsonne, A, Castellanos, J, Chen, J-P, Chen, J, Covrig, S, Chrisman, D, Cruz-Torres, R, Das, R, Fuchey, E, Gal, C, Gibson, BF, Gnanvo, K, Garibaldi, F, Gautam, T, Gomez, J, Gueye, P, Hague, TJ, Hansen, O, Henry, W, Hauenstein, F, Higinbotham, DW, Hyde, C, Kaneta, M, Keppel, C, Kutz, T, Lashley-Colthirst, N, Li, S, Liu, H, Mammei, J, Markowitz, P, McClellan, RE, Meddi, F, Meekins, D, Michaels, R, Mihovilovič, M, Moyer, A, Nguyen, D, Nycz, M, Owen, V, Palatchi, C, Park, S, Petkovic, T, Premathilake, S, Reimer, PE, Reinhold, J, Riordan, S, Rodriguez, V, Samanta, C, Santiesteban, SN, Sawatzky, B, Širca, S, Slifer, K, Su, T, Tian, Y, Toyama, Y, Uehara, K, Urciuoli, GM, Votaw, D, Williamson, J, Wojtsekhowski, B, Wood, S, Yale, B, Ye, Z, Zhang, J, and Zheng, X
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Nuclear and plasma physics - Abstract
A mass spectroscopy experiment with a pair of nearly identical high-resolution spectrometers and a tritium target was performed in Hall A at Jefferson Lab. Utilizing the (e,e′K+) reaction, enhancements, which may correspond to a possible Λnn resonance and a pair of ςNN states, were observed with an energy resolution of about 1.21 MeV (σ), although greater statistics are needed to make definitive identifications. An experimentally measured Λnn state may provide a unique constraint in determining the Λn interaction, for which no scattering data exist. In addition, although bound A=3 and 4 ς hypernuclei have been predicted, only an A=4 ς hypernucleus (Heς4) was found, utilizing the (K-,π-) reaction on a He4 target. The possible bound ςNN state is likely a ς0nn state, although this has to be confirmed by future experiments.
- Published
- 2022
45. Measurement of the Nucleon F2n/F2p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment
- Author
-
Abrams, D, Albataineh, H, Aljawrneh, BS, Alsalmi, S, Androic, D, Aniol, K, Armstrong, W, Arrington, J, Atac, H, Averett, T, Gayoso, C Ayerbe, Bai, X, Bane, J, Barcus, S, Beck, A, Bellini, V, Bhatt, H, Bhetuwal, D, Biswas, D, Blyth, D, Boeglin, W, Bulumulla, D, Butler, J, Camsonne, A, Carmignotto, M, Castellanos, J, Chen, J-P, Cohen, EO, Covrig, S, Craycraft, K, Cruz-Torres, R, Dongwi, B, Duran, B, Dutta, D, Fuchey, E, Gal, C, Gautam, TN, Gilad, S, Gnanvo, K, Gogami, T, Gomez, J, Gu, C, Habarakada, A, Hague, T, Hansen, J-O, Hattawy, M, Hauenstein, F, Higinbotham, DW, Holt, RJ, Hughes, EW, Hyde, C, Ibrahim, H, Jian, S, Joosten, S, Karki, A, Karki, B, Katramatou, AT, Keith, C, Keppel, C, Khachatryan, M, Khachatryan, V, Khanal, A, Kievsky, A, King, D, King, PM, Korover, I, Kulagin, SA, Kumar, KS, Kutz, T, Lashley-Colthirst, N, Li, S, Li, W, Liu, H, Liuti, S, Liyanage, N, Markowitz, P, McClellan, RE, Meekins, D, Beck, S Mey-Tal, Meziani, Z-E, Michaels, R, Mihovilovic, M, Nelyubin, V, Nguyen, D, Nuruzzaman, Nycz, M, Obrecht, R, Olson, M, Owen, VF, Pace, E, Pandey, B, Pandey, V, Paolone, M, Papadopoulou, A, Park, S, Paul, S, Petratos, GG, Petti, R, Piasetzky, E, and Pomatsalyuk, R
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Jefferson Lab Hall A Tritium Collaboration ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
The ratio of the nucleon F_{2} structure functions, F_{2}^{n}/F_{2}^{p}, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from ^{3}H and ^{3}He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab using two high-resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken scaling variable range 0.19
- Published
- 2022
46. The cross-section measurement for the 3H(e, e′K+)nnΛ reaction
- Author
-
Suzuki, KN, Gogami, T, Pandey, B, Itabashi, K, Nagao, S, Okuyama, K, Nakamura, SN, Tang, L, Abrams, D, Akiyama, T, Androic, D, Aniol, K, Gayoso, C Ayerbe, Bane, J, Barcus, S, Barrow, J, Bellini, V, Bhatt, H, Bhetuwal, D, Biswas, D, Camsonne, A, Castellanos, J, Chen, J-P, Chen, J, Covrig, S, Chrisman, D, Cruz-Torres, R, Das, R, Fuchey, E, Gnanvo, K, Garibaldi, F, Gautam, T, Gomez, J, Gueye, P, Hague, TJ, Hansen, O, Henry, W, Hauenstein, F, Higinbotham, DW, Hyde, CE, Kaneta, M, Keppel, C, Kutz, T, Lashley-Colthirst, N, Li, S, Liu, H, Mammei, J, Markowitz, P, McClellan, RE, Meddi, F, Meekins, D, Michaels, R, Mihovilovič, M, Moyer, A, Nguyen, D, Nycz, M, Owen, V, Palatchi, C, Park, S, Petkovic, T, Premathilake, S, Reimer, PE, Reinhold, J, Riordan, S, Rodriguez, V, Samanta, C, Santiesteban, SN, Sawatzky, B, Širca, S, Slifer, K, Su, T, Tian, Y, Toyama, Y, Uehara, K, Urciuoli, GM, Votaw, D, Williamson, J, Wojtsekhowski, B, Wood, SA, Yale, B, Ye, Z, Zhang, J, and Zheng, X
- Subjects
Mathematical Sciences ,Physical Sciences - Abstract
The small binding energy of the hypertriton leads to predictions of the non-existence of bound hypernuclei for isotriplet three-body systems such as nnΛ. However, invariant mass spectroscopy at GSI has reported events that may be interpreted as the bound nnΛ state. The nnΛ state was sought by missing-mass spectroscopy via the (e, e′K+) reaction at Jefferson Lab's experimental Hall A. The present experiment has higher sensitivity to the nnΛ-state investigation in terms of better precision by a factor of about three. The analysis shown in this article focuses on the derivation of the reaction cross-section for the 3H(γ∗, K+)X reaction. Events that were detected in an acceptance, where a Monte Carlo simulation could reproduce the data well (δ p/p| < 4), were analyzed to minimize the systematic uncertainty. No significant structures were observed with the acceptance cuts, and the upper limits of the production cross-section of the nnΛ state were obtained to be 21 and 31 nb sr-1 at the $90\%$ confidence level when theoretical predictions of (-BΛ, Γ) = (0.25, 0.8) MeV and (0.55, 4.7) MeV, respectively, were assumed. The cross-section result provides valuable information for examining the existence of nnΛ.
- Published
- 2022
47. Measurement of the Nucleon $F^n_2/F^p_2$ Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment
- Author
-
MARATHON Collaboration, Abrams, D., Albataineh, H., Aljawrneh, B. S., Alsalmi, S., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Butler, J., Camsonne, A., Carmignotto, M., Castellanos, J., Chen, J. -P., Cohen, E. O., Covrig, S., Craycraft, K., Cruz-Torres, R., Dongwi, B., Duran, B., Dutta, D., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Gomez, J., Gu, C., Habarakada, A., Hague, T., Hansen, J. -O., Hattawy, M., Hauenstein, F., Higinbotham, D. W., Holt, R. J., Hughes, E. W., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Karki, A., Karki, B., Katramatou, A. T., Keith, C., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., Kievsky, A., King, D., King, P. M., Korover, I., Kulagin, S. A., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Li, S., Li, W., Liu, H., Liuti, S., Liyanage, N., Markowitz, P., McClellan, R. E., Meekins, D., Beck, S. Mey-Tal, Meziani, Z. -E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nguyen, D., Nuruzzaman, Nycz, M., Obrecht, R., Olson, M., Owen, V. F., Pace, E., Pandey, B., Pandey, V., Paolone, M., Papadopoulou, A., Park, S., Paul, S., Petratos, G. G., Petti, R., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R. D., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Salme, G., Santiesteban, N., Sawatzky, B., Scopetta, S., Schmidt, A., Schmookler, B., Segal, J., Segarra, E. P., Shahinyan, A., Sirca, S., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Tortorici, F., Urciuoli, G. M., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
High Energy Physics - Experiment - Abstract
The ratio of the nucleon $F_2$ structure functions, $F_2^n/F_2^p$, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from $^3$H and $^3$He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab and used two high resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken scaling variable range $0.19 < x < 0.83$, represent a significant improvement compared to previous SLAC and Jefferson Lab measurements for the ratio. They are compared to recent theoretical calculations and empirical determinations of the $F_2^n/F_2^p$ ratio.
- Published
- 2021
48. Form Factors and Two-Photon Exchange in High-Energy Elastic Electron-Proton Scattering
- Author
-
Christy, M. E., Gautam, T., Ou, L., Schmookler, B., Wang, Y., Adikaram, D., Ahmed, Z., Albataineh, H., Ali, S. F., Aljawrneh, B., Allada, K., Allison, S. L., Alsalmi, S., Androic, D., Aniol, K., Annand, J., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Bartlett, K., Bellini, V., Beminiwattha, R., Bericic, J., Bhatt, H., Bhetuwal, D., Biswas, D., Brash, E., Bulumulla, D., Camacho, C. M., Campbell, J., Camsonne, A., Carmignotto, M., Castellanos, J., Chen, C., Chen, J-P., Chetry, T., Cisbani, E., Clary, B., Cohen, E., Compton, N., Cornejo, J. C., Dusa, S. Covrig, Crowe, B., Danagoulian, S., Danley, T., Deconinck, W., Defurne, M., Desnault, C., Di, D., Dlamini, M., Duer, M., Duran, B., Ent, R., Fanelli, C., Fuchey, E., Gal, C., Gaskell, D., Georges, F., Gilad, S., Glamazdin, O., Gnanvo, K., Gramolin, A. V., Gray, V. M., Gu, C., Habarakada, A., Hague, T., Hamad, G., Hamilton, D., Hamilton, K., Hansen, O., Hauenstein, F., Hernandez, A. V., Henry, W., Higinbotham, D. W., Holmstrom, T., Horn, T., Huang, Y., Huber, G. M., Hyde, C., Ibrahim, H., Israel, N., Jen, C-M., Jin, K., Jones, M., Kabir, A., Karki, B., Keppel, C., Khachatryan, V., King, P. M., Li, S., Li, W., Liu, H., Liu, J., Liyanage, A. H., Mack, D., Magee, J., Malace, S., Mammei, J., Markowitz, P., Mayilyan, S., McClellan, E., Meddi, F., Meekins, D., Mesick, K., Michaels, R., Mkrtchyan, A., Moffit, B., Montgomery, R., Myers, L. S., Nadel-Turonski, P., Nazeer, S. J., Nelyubin, V., Nguyen, D., Nuruzzaman, N., Nycz, M., Obrecht, R. F., Ohanyan, K., Palatchi, C., Pandey, B., Park, K., Park, S., Peng, C., Persio, F. D., Pomatsalyuk, R., Pooser, E., Puckett, A. J. R., Punjabi, V., Quinn, B., Rahman, S., Rashad, M. N. H., Riordan, S., Roche, J., Sapkota, I., Sarty, A., Sawatzky, B., Saylor, N. H., Shabestari, M. H., Shahinyan, A., Sirca, S., Smith, G. R., Sooriyaarachchilage, S., Sparveris, N., Spies, R., Stefanko, A., Su, T., Subedi, A., Sulkosky, V., Sun, A., Tan, Y., Thorne, L., Ton, N., Tortorici, F., Trotta, R., Uniyal, R., Urciuoli, G. M., Voutier, E., Waidyawansa, B., Wojtsekhowski, B., Wood, S., Yan, X., Ye, L., Ye, Z. H., Yero, C., Zhang, J., Zhao, Y. X., and Zhu, P.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q$^2$) up to 15.75~\gevsq. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q$^2$ and double the range over which a longitudinal/transverse separation of the cross section can be performed. The difference between our results and polarization data agrees with that observed at lower Q$^2$ and attributed to hard two-photon exchange (TPE) effects, extending to 8~(GeV/c)$^2$ the range of Q$^2$ for which a discrepancy is established at $>$95\% confidence. We use the discrepancy to quantify the size of TPE contributions needed to explain the cross section at high Q$^2$., Comment: 7 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
49. Accurate Determination of the Neutron Skin Thickness of $^{208}$Pb through Parity-Violation in Electron Scattering
- Author
-
Adhikari, D., Albataineh, H., Androic, D., Aniol, K., Armstrong, D. S., Averett, T., Barcus, S., Bellini, V., Beminiwattha, R. S., Benesch, J. F., Bhatt, H., Pathak, D. Bhatta, Bhetuwal, D., Blaikie, B., Campagna, Q., Camsonne, A., Cates, G. D., Chen, Y., Clarke, C., Cornejo, J. C., Dusa, S. Covrig, Datta, P., Deshpande, A., Dutta, D., Feldman, C., Fuchey, E., Gal, C., Gaskell, D., Gautam, T., Gayoso, C. Ayerbe, Gericke, M., Ghosh, C., Halilovic, I., Hansen, J. -O., Hauenstein, F., Henry, W., Horowitz, C. J., Jantzi, C., Jian, S., Johnston, S., Jones, D. C., Karki, B., Katugampola, S., Keppel, C., King, P. M., King, D. E., Knauss, M., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Leverick, G., Liu, H., Liyange, N., Malace, S., Mammei, R., Mammei, J., McCaughan, M., McNulty, D., Meekins, D., Metts, C., Michaels, R., Mondal, M. M., Napolitano, J., Narayan, A., Nikolaev, D., Rashad, M. N. H., Owen, V., Palatchi, C., Pan, 14 J., Pandey, B., Park, S., Paschke, K. D., Petrusky, M., Pitt, M. L., Premathilake, S., Puckett, A. J. R., Quinn, B., Radloff, R., Rahman, S., Rathnayake, A., Reed, B. T., Reimer, P. E., Richards, R., Riordan, S., Roblin, Y., Seeds, S., Shahinyan, A., Souder, P., Tang, L., Thiel, 16 M., Tian, Y., Urciuoli, G. M., Wertz, E. W., Wojtsekhowski, B., Yale, B., Ye, T., Yoon, A., Zec, A., Zhang, W., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment - Abstract
We report a precision measurement of the parity-violating asymmetry $A_{PV}$ in the elastic scattering of longitudinally polarized electrons from $^{208}$Pb. We measure $A_{PV}=550\pm 16 {\rm (stat)}\pm 8\ {\rm (syst)}$ parts per billion, leading to an extraction of the neutral weak form factor $F_W(Q^2 = 0.00616\ {\rm GeV}^2) = 0.368 \pm 0.013$. Combined with our previous measurement, the extracted neutron skin thickness is $R_n-R_p=0.283 \pm 0.071$~fm. The result also yields the first significant direct measurement of the interior weak density of $^{208}$Pb: $\rho^0_W = -0.0796\pm0.0036\ {\rm (exp.)}\pm0.0013\ {\rm (theo.)}\ {\rm fm}^{-3}$ leading to the interior baryon density $\rho^0_b = 0.1480\pm0.0036\ {\rm (exp.)}\pm0.0013\ {\rm (theo.)}\ {\rm fm}^{-3}$. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.
- Published
- 2021
- Full Text
- View/download PDF
50. Measurement of the Ar(e,e$^\prime$ p) and Ti(e,e$^\prime$ p) cross sections in Jefferson Lab Hall A
- Author
-
Gu, L., Abrams, D., Ankowski, A. M., Jiang, L., Aljawrneh, B., Alsalmi, S., Bane, J., Batz, A., Barcus, S., Barroso, M., Benhar, O., Bellini, V., Bericic, J., Biswas, D., Camsonne, A., Castellanos, J., Chen, J. -P., Christy, M. E., Craycraft, K., Cruz-Torres, R., Dai, H., Day, D., Dusa, S. -C., Fuchey, E., Gautam, T., Giusti, C., Gomez, J., Gu, C., Hague, T., Hansen, J. -O., Hauenstein, F., Higinbotham, D. W., Hyde, C., Keppel, C., Li, S., Lindgren, R., Liu, H., Mariani, C., McClellan, R. E., Meekins, D., Michaels, R., Mihovilovic, M., Murphy, M., Nguyen, D., Nycz, M., Ou, L., Pandey, B., Pandey, V., Park, K., Perera, G., Puckett, A. J. R., Santiesteban, S. N., Širca, S., Su, T., Tang, L., Tian, Y., Ton, N., Wojtsekhowski, B., Wood, S., Ye, Z., and Zhang, J.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has collected exclusive electron-scattering data (e,e$^\prime$p) in parallel kinematics using natural argon and natural titanium targets. Here, we report the first results of the analysis of the data set corresponding to beam energy of 2,222 MeV, electron scattering angle 21.5 deg, and proton emission angle -50 deg. The differential cross sections, measured with $\sim$4% uncertainty, have been studied as a function of missing energy and missing momentum, and compared to the results of Monte Carlo simulations, obtained from a model based on the Distorted Wave Impulse Approximation., Comment: 14 pages, 8 figures (submitted to PRC)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.