Back to Search
Start Over
Inclusive studies of two- and three-nucleon short-range correlations in $^3$H and $^3$He
- Publication Year :
- 2024
-
Abstract
- Inclusive electron scattering at carefully chosen kinematics can isolate scattering from short-range correlations (SRCs), produced through hard, short-distance interactions of nucleons in the nucleus. Because the two-nucleon (2N) SRCs arise from the same N-N interaction in all nuclei, the cross section in the SRC-dominated regime is identical up to an overall scaling factor, and the A/2H cross section ratio is constant in this region. This scaling behavior has been used to identify SRC dominance and to map out the contribution of SRCs for a wide range of nuclei. We examine this scaling behavior at lower momentum transfers using new data on $^2$H, $^3$H, and $^3$He which show that the scaling region is larger than in heavy nuclei. Based on the improved scaling, especially for $^3$H/$^3$He, we examine the ratios at kinematics where three-nucleon SRCs may play an important role. The data for the largest initial nucleon momenta are consistent with isolation of scattering from 3N-SRCs, and suggest that the very-highest momentum nucleons in $^3$He have a nearly isospin-independent momentum configuration, or a small enhancement of the proton distribution.
- Subjects :
- Nuclear Experiment
Nuclear Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2404.16235
- Document Type :
- Working Paper