1. The e-Flower: A hydrogel-actuated 3D MEA for brain spheroid electrophysiology.
- Author
-
Martinelli, Eleonora, Akouissi, Outman, Liebi, Luca, Furfaro, Ivan, Maulà, Desirée, Savoia, Nathan, Remy, Antoine, Nikles, Laetitia, Roux, Adrien, Stoppini, Luc, and Lacour, Stéphanie P.
- Subjects
- *
POLYACRYLIC acid , *NERVE tissue , *CELL culture , *ELECTROPHYSIOLOGY , *ORGANOIDS , *HYDROGELS - Abstract
Traditional microelectrode arrays (MEAs) are limited to measuring electrophysiological activity in two dimensions, failing to capture the complexity of three-dimensional (3D) tissues such as neural organoids and spheroids. Here, we introduce a flower-shaped MEA (e-Flower) that can envelop submillimeter brain spheroids following actuation by the sole addition of the cell culture medium. Inspired by soft microgrippers, its actuation mechanism leverages the swelling properties of a polyacrylic acid hydrogel grafted to a polyimide substrate hosting the electrical interconnects. Compatible with standard electrophysiology recording systems, the e-Flower does not require additional equipment or solvents and is ready to use with preformed 3D tissues. We designed an e-Flower achieving a curvature as low as 300 micrometers within minutes, a value tunable by the choice of reswelling media and hydrogel cross-linker concentration. Furthermore, we demonstrate the ability of the e-Flower to detect spontaneous neural activity across the spheroid surface, demonstrating its potential for comprehensive neural signal recording. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF