Back to Search Start Over

Preparation of bacterial cellulose/acrylic acid-based pH-responsive smart dressings by graft copolymerization method.

Authors :
Zhang, Wen
Hu, Xinyue
Jiang, Fei
Li, Yirui
Chen, Wenhao
Zhou, Ting
Source :
Journal of Biomaterials Science -- Polymer Edition. Aug2024, p1-23. 23p. 12 Illustrations.
Publication Year :
2024

Abstract

AbstractConventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive ‘smart’ dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a ‘smart’ drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as <italic>E. coli, S. aureus,</italic> and <italic>P. aeruginosa</italic> by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09205063
Database :
Academic Search Index
Journal :
Journal of Biomaterials Science -- Polymer Edition
Publication Type :
Academic Journal
Accession number :
179101040
Full Text :
https://doi.org/10.1080/09205063.2024.2389689