1. Neoantigen vaccine nanoformulations based on Chemically synthesized minimal mRNA (CmRNA): small molecules, big impact
- Author
-
Saber Imani, Oya Tagit, and Chantal Pichon
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Recently, chemically synthesized minimal mRNA (CmRNA) has emerged as a promising alternative to in vitro transcribed mRNA (IVT-mRNA) for cancer therapy and immunotherapy. CmRNA lacking the untranslated regions and polyadenylation exhibits enhanced stability and efficiency. Encapsulation of CmRNA within lipid-polymer hybrid nanoparticles (LPPs) offers an effective approach for personalized neoantigen mRNA vaccines with improved control over tumor growth. LPP-based delivery systems provide superior pharmacokinetics, stability, and lower toxicity compared to viral vectors, naked mRNA, or lipid nanoparticles that are commonly used for mRNA delivery. Precise customization of LPPs in terms of size, surface charge, and composition allows for optimized cellular uptake, target specificity, and immune stimulation. CmRNA-encoded neo-antigens demonstrate high translational efficiency, enabling immune recognition by CD8+ T cells upon processing and presentation. This perspective highlights the potential benefits, challenges, and future directions of CmRNA neoantigen vaccines in cancer therapy compared to Circular RNAs and IVT-mRNA. Further research is needed to optimize vaccine design, delivery, and safety assessment in clinical trials. Nevertheless, personalized LPP-CmRNA vaccines hold great potential for advancing cancer immunotherapy, paving the way for personalized medicine.
- Published
- 2024
- Full Text
- View/download PDF