Back to Search
Start Over
In vivo clearance of (19)F MRI imaging nanocarriers is strongly influenced by nanoparticle ultrastructure
- Source :
- Biomaterials, 261, Biomaterials
- Publication Year :
- 2020
-
Abstract
- Contains fulltext : 229164.pdf (Publisher’s version ) (Open Access) Perfluorocarbons hold great promise both as imaging agents, particularly for (19)F MRI, and in therapy, such as oxygen delivery. (19)F MRI is unique in its ability to unambiguously track and quantify a tracer while maintaining anatomic context, and without the use of ionizing radiation. This is particularly well-suited for inflammation imaging and quantitative cell tracking. However, perfluorocarbons, which are best suited for imaging - like perfluoro-15-crown-5 ether (PFCE) - tend to have extremely long biological retention. Here, we showed that the use of a multi-core PLGA nanoparticle entrapping PFCE allows for a 15-fold reduction of half-life in vivo compared to what is reported in literature. This unexpected rapid decrease in (19)F signal was observed in liver, spleen and within the infarcted region after myocardial infarction and was confirmed by whole body NMR spectroscopy. We demonstrate that the fast clearance is due to disassembly of the ~200 nm nanoparticle into ~30 nm domains that remain soluble and are cleared quickly. We show here that the nanoparticle ultrastructure has a direct impact on in vivo clearance of its cargo i.e. allowing fast release of PFCE, and therefore also bringing the possibility of multifunctional nanoparticle-based imaging to translational imaging, therapy and diagnostics.
- Subjects :
- Cancer development and immune defence Radboud Institute for Molecular Life Sciences [Radboudumc 2]
Biophysics
Nanoparticle
Bioengineering
Context (language use)
02 engineering and technology
Biomaterials
03 medical and health sciences
chemistry.chemical_compound
All institutes and research themes of the Radboud University Medical Center
In vivo
Inflammation imaging
Urological cancers Radboud Institute for Molecular Life Sciences [Radboudumc 15]
030304 developmental biology
0303 health sciences
021001 nanoscience & nanotechnology
PLGA
chemistry
Mechanics of Materials
Urological cancers Radboud Institute for Health Sciences [Radboudumc 15]
Ceramics and Composites
Ultrastructure
Cell tracking
Nanocarriers
0210 nano-technology
Nanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]
Biomedical engineering
Subjects
Details
- ISSN :
- 01429612
- Database :
- OpenAIRE
- Journal :
- Biomaterials, 261, Biomaterials
- Accession number :
- edsair.doi.dedup.....8a3d80fe59b2bcaf6fa87249246044a0