18 results on '"Ordóñez GR"'
Search Results
2. Comprehensive genomic diagnosis of inherited retinal and optical nerve disorders reveals hidden syndromes and personalized therapeutic options.
- Author
-
Diñeiro M, Capín R, Cifuentes GÁ, Fernández-Vega B, Villota E, Otero A, Santiago A, Pruneda PC, Castillo D, Viejo-Díaz M, Hernando I, Durán NS, Álvarez R, Lago CG, Ordóñez GR, Fernández-Vega Á, Cabanillas R, and Cadiñanos J
- Subjects
- High-Throughput Nucleotide Sequencing, Humans, Optic Nerve Diseases diagnosis, Optic Nerve Diseases therapy, Pedigree, Phenotype, Retinal Diseases diagnosis, Retinal Diseases therapy, Syndrome, Disease Management, Genetic Testing methods, Genomics methods, Optic Nerve Diseases genetics, Retinal Diseases genetics
- Abstract
Purpose: In the era of precision medicine, genomic characterization of blind patients is critical. Here, we evaluate the effects of comprehensive genetic analysis on the etiologic diagnosis of potentially hereditary vision loss and its impact on clinical management., Methods: We studied 100 non-syndromic and syndromic Spanish patients with a clinical diagnosis of blindness caused by alterations on the retina, choroid, vitreous and/or optic nerve. We used a next-generation sequencing (NGS) panel (OFTALMOgenics™), developed and validated within this study, including up to 362 genes previously associated with these conditions., Results: We identified the genetic cause of blindness in 45% of patients (45/100). A total of 28.9% of genetically diagnosed cases (13/45) were syndromic and, of those, in 30.8% (4/13) extraophthalmic features had been overlooked and/or not related to visual impairment before genetic testing, including cases with Mainzer-Saldino, Bardet-Biedl, mucolipidosis and MLCRD syndromes. In two additional cases-syndromic blindness had been proposed before, but not specifically diagnosed, and one patient with Heimler syndrome had been misdiagnosed as an Usher case before testing. 33.3% of the genetically diagnosed patients (15/45) had causative variants in genes targeted by clinical trials exploring the curative potential of gene therapy approaches., Conclusion: Comprehensive genomic testing provided clinically relevant insights in a large proportion of blind patients, identifying potential therapeutic opportunities or previously undiagnosed syndromes in 42.2% of the genetically diagnosed cases (19/45)., (© 2020 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.)
- Published
- 2020
- Full Text
- View/download PDF
3. Sequencing results from multiple individuals of different ethnicities strongly question the existence of the KCNE1B pseudogene.
- Author
-
Diñeiro M, Cifuentes GA, Capín R, Santiago A, Otero A, Castillo D, Pruneda PC, Ordóñez GR, Cabanillas R, and Cadiñanos J
- Subjects
- Base Sequence, Humans, Potassium Channels, Voltage-Gated genetics, Pseudogenes genetics
- Published
- 2020
- Full Text
- View/download PDF
4. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients.
- Author
-
Cabanillas R, Diñeiro M, Cifuentes GA, Castillo D, Pruneda PC, Álvarez R, Sánchez-Durán N, Capín R, Plasencia A, Viejo-Díaz M, García-González N, Hernando I, Llorente JL, Repáraz-Andrade A, Torreira-Banzas C, Rosell J, Govea N, Gómez-Martínez JR, Núñez-Batalla F, Garrote JA, Mazón-Gutiérrez Á, Costales M, Isidoro-García M, García-Berrocal B, Ordóñez GR, and Cadiñanos J
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, High-Throughput Nucleotide Sequencing, Humans, INDEL Mutation, Infant, Infant, Newborn, Male, Middle Aged, Phenotype, Spain, Young Adult, Genomics, Hearing Loss diagnosis, Hearing Loss genetics
- Abstract
Background: Sensorineural hearing loss (SNHL) is the most common sensory impairment. Comprehensive next-generation sequencing (NGS) has become the standard for the etiological diagnosis of early-onset SNHL. However, accurate selection of target genomic regions (gene panel/exome/genome), analytical performance and variant interpretation remain relevant difficulties for its clinical implementation., Methods: We developed a novel NGS panel with 199 genes associated with non-syndromic and/or syndromic SNHL. We evaluated the analytical sensitivity and specificity of the panel on 1624 known single nucleotide variants (SNVs) and indels on a mixture of genomic DNA from 10 previously characterized lymphoblastoid cell lines, and analyzed 50 Spanish patients with presumed hereditary SNHL not caused by GJB2/GJB6, OTOF nor MT-RNR1 mutations., Results: The analytical sensitivity of the test to detect SNVs and indels on the DNA mixture from the cell lines was > 99.5%, with a specificity > 99.9%. The diagnostic yield on the SNHL patients was 42% (21/50): 47.6% (10/21) with autosomal recessive inheritance pattern (BSND, CDH23, MYO15A, STRC [n = 2], USH2A [n = 3], RDX, SLC26A4); 38.1% (8/21) autosomal dominant (ACTG1 [n = 3; 2 de novo], CHD7, GATA3 [de novo], MITF, P2RX2, SOX10), and 14.3% (3/21) X-linked (COL4A5 [de novo], POU3F4, PRPS1). 46.9% of causative variants (15/32) were not in the databases. 28.6% of genetically diagnosed cases (6/21) had previously undetected syndromes (Barakat, Usher type 2A [n = 3] and Waardenburg [n = 2]). 19% of genetic diagnoses (4/21) were attributable to large deletions/duplications (STRC deletion [n = 2]; partial CDH23 duplication; RDX exon 2 deletion)., Conclusions: In the era of precision medicine, obtaining an etiologic diagnosis of SNHL is imperative. Here, we contribute to show that, with the right methodology, NGS can be transferred to the clinical practice, boosting the yield of SNHL genetic diagnosis to 50-60% (including GJB2/GJB6 alterations), improving diagnostic/prognostic accuracy, refining genetic and reproductive counseling and revealing clinically relevant undiagnosed syndromes.
- Published
- 2018
- Full Text
- View/download PDF
5. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets.
- Author
-
Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, Nadeu F, Ordóñez GR, Rovira J, Clot G, Royo C, Navarro A, Gonzalez-Farre B, Vaghefi A, Castellano G, Rubio-Perez C, Tamborero D, Briones J, Salar A, Sancho JM, Mercadal S, Gonzalez-Barca E, Escoda L, Miyoshi H, Ohshima K, Miyawaki K, Kato K, Akashi K, Mozos A, Colomo L, Alcoceba M, Valera A, Carrió A, Costa D, Lopez-Bigas N, Schmitz R, Staudt LM, Salaverria I, López-Guillermo A, and Campo E
- Subjects
- Adult, Aged, Antineoplastic Agents pharmacology, Cell Line, Tumor, DNA Copy Number Variations, Female, High-Throughput Nucleotide Sequencing, Humans, Janus Kinases metabolism, Lymphoma, Large B-Cell, Diffuse drug therapy, Lymphoma, Large B-Cell, Diffuse pathology, Male, Middle Aged, Mutation, Neoplasm Staging, Receptors, Notch metabolism, STAT Transcription Factors metabolism, Genetic Variation, Genomics methods, Lymphoma, Large B-Cell, Diffuse genetics, Lymphoma, Large B-Cell, Diffuse metabolism, Signal Transduction drug effects
- Abstract
Genome studies of diffuse large B-cell lymphoma (DLBCL) have revealed a large number of somatic mutations and structural alterations. However, the clinical significance of these alterations is still not well defined. In this study, we have integrated the analysis of targeted next-generation sequencing of 106 genes and genomic copy number alterations (CNA) in 150 DLBCL. The clinically significant findings were validated in an independent cohort of 111 patients. Germinal center B-cell and activated B-cell DLBCL had a differential profile of mutations, altered pathogenic pathways and CNA. Mutations in genes of the NOTCH pathway and tumor suppressor genes (TP53/CDKN2A), but not individual genes, conferred an unfavorable prognosis, confirmed in the independent validation cohort. A gene expression profiling analysis showed that tumors with NOTCH pathway mutations had a significant modulation of downstream target genes, emphasizing the relevance of this pathway in DLBCL. An in silico drug discovery analysis recognized 69 (46%) cases carrying at least one genomic alteration considered a potential target of drug response according to early clinical trials or preclinical assays in DLBCL or other lymphomas. In conclusion, this study identifies relevant pathways and mutated genes in DLBCL and recognizes potential targets for new intervention strategies.
- Published
- 2018
- Full Text
- View/download PDF
6. From Waldenström's macroglobulinemia to aggressive diffuse large B-cell lymphoma: a whole-exome analysis of abnormalities leading to transformation.
- Author
-
Jiménez C, Alonso-Álvarez S, Alcoceba M, Ordóñez GR, García-Álvarez M, Prieto-Conde MI, Chillón MC, Balanzategui A, Corral R, Marín LA, Gutiérrez NC, Puig N, Sarasquete ME, González M, and García-Sanz R
- Subjects
- Aged, Aged, 80 and over, Female, Humans, Male, Middle Aged, Biomarkers, Tumor genetics, CD79 Antigens genetics, Cell Transformation, Neoplastic genetics, Exome, Lymphoma, Large B-Cell, Diffuse genetics, Mutation, Neoplasm Proteins genetics, Waldenstrom Macroglobulinemia genetics
- Abstract
Transformation of Waldenström's macroglobulinemia (WM) to diffuse large B-cell lymphoma (DLBCL) occurs in up to 10% of patients and is associated with an adverse outcome. Here we performed the first whole-exome sequencing study of WM patients who evolved to DLBCL and report the genetic alterations that may drive this process. Our results demonstrate that transformation depends on the frequency and specificity of acquired variants, rather than on the duration of its evolution. We did not find a common pattern of mutations at diagnosis or transformation; however, there were certain abnormalities that were present in a high proportion of clonal tumor cells and conserved during this transition, suggesting that they have a key role as early drivers. In addition, recurrent mutations gained in some genes at transformation (for example, PIM1, FRYL and HNF1B) represent cooperating events in the selection of the clones responsible for disease progression. Detailed comparison reveals the gene abnormalities at diagnosis and transformation to be consistent with a branching model of evolution. Finally, the frequent mutation observed in the CD79B gene in this specific subset of patients implies that it is a potential biomarker predicting transformation in WM.
- Published
- 2017
- Full Text
- View/download PDF
7. A novel molecular diagnostics platform for somatic and germline precision oncology.
- Author
-
Cabanillas R, Diñeiro M, Castillo D, Pruneda PC, Penas C, Cifuentes GA, de Vicente Á, Durán NS, Álvarez R, Ordóñez GR, and Cadiñanos J
- Abstract
Background: Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies., Methods: Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines., Results: The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent., Conclusion: With an adequate methodology, it is possible to translate to the clinical practice the latest advances in precision oncology, integrating under the same platform the identification of somatic and germline genomic alterations.
- Published
- 2017
- Full Text
- View/download PDF
8. A Next-Generation Sequencing Strategy for Evaluating the Most Common Genetic Abnormalities in Multiple Myeloma.
- Author
-
Jiménez C, Jara-Acevedo M, Corchete LA, Castillo D, Ordóñez GR, Sarasquete ME, Puig N, Martínez-López J, Prieto-Conde MI, García-Álvarez M, Chillón MC, Balanzategui A, Alcoceba M, Oriol A, Rosiñol L, Palomera L, Teruel AI, Lahuerta JJ, Bladé J, Mateos MV, Orfão A, San Miguel JF, González M, Gutiérrez NC, and García-Sanz R
- Subjects
- Aged, Female, Gene Frequency, Genes, Neoplasm, Humans, Male, Middle Aged, Multiple Myeloma diagnosis, Mutation, DNA Mutational Analysis methods, High-Throughput Nucleotide Sequencing methods, Molecular Diagnostic Techniques, Multiple Myeloma genetics
- Abstract
Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma., (Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
9. Identification of novel tumor suppressor proteases by degradome profiling of colorectal carcinomas.
- Author
-
Fraile JM, Ordóñez GR, Quirós PM, Astudillo A, Galván JA, Colomer D, López-Otín C, Freije JM, and Puente XS
- Subjects
- Animals, Caco-2 Cells, Caenorhabditis elegans Proteins, Cell Growth Processes physiology, Cell Line, Tumor, Colorectal Neoplasms genetics, Colorectal Neoplasms metabolism, Colorectal Neoplasms pathology, Gene Expression Regulation, Neoplastic, Genes, Tumor Suppressor, HCT116 Cells, HEK293 Cells, Humans, Mice, Mice, Nude, Peptide Hydrolases genetics, Transfection, Colorectal Neoplasms enzymology, Peptide Hydrolases metabolism
- Abstract
Proteolytic enzymes play important roles during tumor development and progression through their ability to promote cell growth or by facilitating the invasion of surrounding tissues. The human genome contains more than 570 protease-coding genes, many of them forming functional networks, which has forced the use of global strategies for the analysis of this group of enzymes. In this study, we have designed a new quantitative PCR-based device for profiling the entire degradome in human malignancies. We have used this method to evaluate protease expression levels in colorectal carcinomas with the finding that most proteases with altered expression in these tumors exert their function in the extracellular compartment. In addition, we have found that among genes encoding repressed proteases there was a higher proportion with somatic mutations in colorectal cancer when compared to genes coding for upregulated proteases (14% vs. 4%, p<0.05). One of these genes, MASP3, is consistently repressed in colorectal carcinomas as well as in colorectal cancer cell lines when compared to normal colonic mucosa. Functional analysis of this gene revealed that ectopic expression of MASP3 reduces cell proliferation in vitro and restrains subcutaneous tumor growth, whereas its downregulation induces an increase in the tumorigenic potential of colorectal cancer cells. These results provide new insights into the diversity of proteases associated with cancer and support the utility of degradome profiling to identify novel proteases with tumor-defying functions.
- Published
- 2013
- Full Text
- View/download PDF
10. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia.
- Author
-
Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, Ramsay AJ, Beà S, Pinyol M, Martínez-Trillos A, López-Guerra M, Colomer D, Navarro A, Baumann T, Aymerich M, Rozman M, Delgado J, Giné E, Hernández JM, González-Díaz M, Puente DA, Velasco G, Freije JM, Tubío JM, Royo R, Gelpí JL, Orozco M, Pisano DG, Zamora J, Vázquez M, Valencia A, Himmelbauer H, Bayés M, Heath S, Gut M, Gut I, Estivill X, López-Guillermo A, Puente XS, Campo E, and López-Otín C
- Subjects
- Amino Acid Sequence, Disease Progression, Exome, Humans, Leukemia, Lymphocytic, Chronic, B-Cell mortality, RNA Splicing Factors, Sequence Alignment, Leukemia, Lymphocytic, Chronic, B-Cell genetics, Mutation, Phosphoproteins genetics, Ribonucleoprotein, U2 Small Nuclear genetics
- Abstract
Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies.
- Published
- 2011
- Full Text
- View/download PDF
11. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia.
- Author
-
Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, Bassaganyas L, Baumann T, Juan M, López-Guerra M, Colomer D, Tubío JM, López C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernández JM, Puente DA, Freije JM, Velasco G, Gutiérrez-Fernández A, Costa D, Carrió A, Guijarro S, Enjuanes A, Hernández L, Yagüe J, Nicolás P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjosé S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpí JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigó R, Bayés M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, López-Guillermo A, Estivill X, Montserrat E, López-Otín C, and Campo E
- Subjects
- Amino Acid Sequence, Animals, Carrier Proteins genetics, DNA Mutational Analysis, Humans, Karyopherins genetics, Molecular Sequence Data, Myeloid Differentiation Factor 88 chemistry, Myeloid Differentiation Factor 88 genetics, Receptor, Notch1 genetics, Receptors, Cytoplasmic and Nuclear genetics, Reproducibility of Results, Exportin 1 Protein, Genome, Human genetics, Leukemia, Lymphocytic, Chronic, B-Cell genetics, Mutation genetics
- Abstract
Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer., (©2011 Macmillan Publishers Limited. All rights reserved)
- Published
- 2011
- Full Text
- View/download PDF
12. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome.
- Author
-
Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadiñanos J, Fraile JM, Ordóñez GR, Puente DA, Gutiérrez-Fernández A, Fanjul-Fernández M, Lévy N, Freije JM, and López-Otín C
- Subjects
- Adult, Cell Nucleus, Cells, Cultured, Child, Preschool, DNA Mutational Analysis, Female, Fibroblasts metabolism, Genetic Linkage, Homozygote, Humans, Lamin Type A genetics, Lamin Type A metabolism, Male, Membrane Proteins metabolism, Mutation, Nuclear Proteins metabolism, Pedigree, Phenotype, Progeria genetics, Progeria metabolism, Progeria pathology, Protein Conformation, Sequence Alignment, DNA-Binding Proteins genetics, Nuclear Proteins genetics
- Abstract
Accelerated aging syndromes represent a valuable source of information about the molecular mechanisms involved in normal aging. Here, we describe a progeroid syndrome that partially phenocopies Hutchinson-Gilford progeria syndrome (HGPS) but also exhibits distinctive features, including the absence of cardiovascular deficiencies characteristic of HGPS, the lack of mutations in LMNA and ZMPSTE24, and a relatively long lifespan of affected individuals. Exome sequencing and molecular analysis in two unrelated families allowed us to identify a homozygous mutation in BANF1 (c.34G>A [p.Ala12Thr]), encoding barrier-to-autointegration factor 1 (BAF), as the molecular abnormality responsible for this Mendelian disorder. Functional analysis showed that fibroblasts from both patients have a dramatic reduction in BAF protein levels, indicating that the p.Ala12Thr mutation impairs protein stability. Furthermore, progeroid fibroblasts display profound abnormalities in the nuclear lamina, including blebs and abnormal distribution of emerin, an interaction partner of BAF. These nuclear abnormalities are rescued by ectopic expression of wild-type BANF1, providing evidence for the causal role of this mutation. These data demonstrate the utility of exome sequencing for identifying the cause of rare Mendelian disorders and underscore the importance of nuclear envelope alterations in human aging., (Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
13. A comprehensive catalogue of somatic mutations from a human cancer genome.
- Author
-
Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, and Stratton MR
- Subjects
- Adult, Cell Line, Tumor, DNA Damage genetics, DNA Mutational Analysis, DNA Repair genetics, Gene Dosage genetics, Humans, Loss of Heterozygosity genetics, Male, Melanoma etiology, Melanoma genetics, MicroRNAs genetics, Mutagenesis, Insertional genetics, Neoplasms etiology, Polymorphism, Single Nucleotide genetics, Precision Medicine, Sequence Deletion genetics, Ultraviolet Rays, Genes, Neoplasm genetics, Genome, Human genetics, Mutation genetics, Neoplasms genetics
- Abstract
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.
- Published
- 2010
- Full Text
- View/download PDF
14. Metalloproteases and the degradome.
- Author
-
Ugalde AP, Ordóñez GR, Quirós PM, Puente XS, and López-Otín C
- Subjects
- Amino Acid Motifs, Animals, Biocatalysis, Disease, Humans, Metalloproteases chemistry, Metalloproteases classification, Metalloproteases metabolism, Protein Processing, Post-Translational
- Abstract
Metalloproteases comprise a heterogeneous group of proteolytic enzymes whose main characteristic is the utilization of a metal ion to polarize a water molecule and perform hydrolytic reactions. These enzymes represent the most densely populated catalytic class of proteases in many organisms and play essential roles in multiple biological processes. In this chapter, we will first present a general description of the complexity of metalloproteases in the context of the degradome, which is defined as the complete set of protease genes encoded by the genome of a certain organism. We will also discuss the functional relevance of these enzymes in a large variety of biological and pathological conditions. Finally, we will analyze in more detail three families of metalloproteases: ADAMs (a disintegrin and metalloproteinase), ADAMTSs (ADAMs with thrombospondin domains), and MMPs (matrix metalloproteinases) which have a growing relevance in a number of human pathologies including cancer, arthritis, neurodegenerative disorders, and cardiovascular diseases.
- Published
- 2010
- Full Text
- View/download PDF
15. Proteolytic systems: constructing degradomes.
- Author
-
Ordóñez GR, Puente XS, Quesada V, and López-Otín C
- Subjects
- Animals, Evolution, Molecular, Genome, Human, Humans, Computational Biology methods, Genomics methods, Peptide Hydrolases genetics
- Abstract
Proteolytic enzymes play an essential role in many biological and pathological processes. Taking advantage of the recent availability of several mammalian genome sequences and by using a set of computational approaches, we have annotated and compared the degradome or complete repertoire of proteases of different mammalian species including human, mouse, rat, and chimpanzee. These studies have allowed us to expand our knowledge about the complexity, evolution, and diversity of proteolytic systems, which represent about 2% of the studied genomes. In this chapter, we review the genomic and computational methodologies used in this degradomic analysis and summarize the main findings derived from comparison of mammalian degradomes.
- Published
- 2009
- Full Text
- View/download PDF
16. The Degradome database: mammalian proteases and diseases of proteolysis.
- Author
-
Quesada V, Ordóñez GR, Sánchez LM, Puente XS, and López-Otín C
- Subjects
- Animals, Genetic Diseases, Inborn genetics, Humans, Mice, Mutation, Pan troglodytes, Proteome chemistry, Proteome genetics, Rats, Databases, Protein, Peptide Hydrolases chemistry, Peptide Hydrolases genetics
- Abstract
The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.
- Published
- 2009
- Full Text
- View/download PDF
17. Genome analysis of the platypus reveals unique signatures of evolution.
- Author
-
Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AF, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ES, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, and Wilson RK
- Subjects
- Animals, Base Composition, Dentition, Female, Genomic Imprinting genetics, Humans, Immunity genetics, Male, Mammals genetics, MicroRNAs genetics, Milk Proteins genetics, Phylogeny, Platypus immunology, Platypus physiology, Receptors, Odorant genetics, Repetitive Sequences, Nucleic Acid genetics, Reptiles genetics, Sequence Analysis, DNA, Spermatozoa metabolism, Venoms genetics, Zona Pellucida metabolism, Evolution, Molecular, Genome genetics, Platypus genetics
- Abstract
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
- Published
- 2008
- Full Text
- View/download PDF
18. Comparative genomic analysis of human and chimpanzee proteases.
- Author
-
Puente XS, Gutiérrez-Fernández A, Ordóñez GR, Hillier LW, and López-Otín C
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Blotting, Southern, Computational Biology, Genomics methods, Humans, Molecular Sequence Data, Pseudogenes genetics, Sequence Alignment, Sequence Analysis, DNA, Species Specificity, Evolution, Molecular, Genetic Variation, Pan troglodytes genetics, Peptide Hydrolases genetics
- Abstract
Proteolytic enzymes are implicated in multiple physiological and pathological processes. The availability of the sequence of the chimpanzee genome has allowed us to determine that the chimpanzee degradome-the repertoire of protease genes from this organism-is composed of at least 559 protease and protease-like genes and is virtually identical to that of human, containing 561 genes. Despite the high degree of conservation between both genomes, we have identified important differences that vary from deletion of whole genes to small insertion/deletion events or single nucleotide changes that lead to the specific gene inactivation in one species, mostly affecting immune system genes. For example, the genes encoding PRSS33/EOS, a macrophage serine protease conserved in most mammals, and GGTLA1 are absent in chimpanzee, while the gene for metalloprotease MMP23A, located in chromosome 1p36, has been specifically duplicated in the human genome together with its neighbor gene CDC2L1. Other differences arise from single nucleotide changes in protease genes, such as NAPSB and CASP12, resulting in the presence of functional genes in chimpanzee and pseudogenes in human. Finally, we have confirmed that the Trypanosoma lytic factor HPR is inactive in chimpanzee, likely contributing to the susceptibility of chimpanzees to T. brucei infection. This study provides the first analysis of the chimpanzee degradome and might contribute to the understanding of the molecular bases underlying variations in host defense mechanisms between human and chimpanzee.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.