Octopus djinda Amor, sp. nov. (Figs. 2���3) Octopus tetricus, Joll et al. 1976, 1977, 1978; Roper et al. 1984: 209; Kirkman et al. 1991: 557; Stranks 1998: 541 (in part); Guerra et al. 2010: 1405 (in part); Acosta-Jofre et al. 2012 (in part); Reid & Wilson 2015 (in part); Greenwell et al. 2019. Octopus cf. tetricus, Roper 1997; Norman & Reid 2000; Finn et al. (2005); Guzik et al. 2005; Norman & Hochberg 2005: 146; Amor et al. 2014; Norman et al. 2014: 58; Leporati & Hart 2015; Leporati et al. 2015; Hart et al. 2016; Reid 2016: 396; Amor et al. 2017; Sauer et al. 2020; Somaweera & Somaweera 2021. Octopus aff. tetricus, Hart et al. 2019. Type material. Seven type specimens were designated, including at least one male and one female from each sampled locality which encompasses most of the species��� distribution. Other material examined (a further 7 males and 11 females) are listed in Table 1 (n = 25). Raw morphological data are available in Tables S1���S 4. Holotype: AUSTRALIA: Western Australia: Esperance: Male, 138.6 mm ML (Fig. 3). Collected by M. Amor 10-Dec-2019 via non-baited trap, 7���9 m depth. Esperance Bay (-33.84, 121.91) (WAM S.89010). Paratypes: AUSTRALIA: Esperance: (i) Female, 163.4 mm ML. Collected by M. Amor 10-Dec-2019 via non-baited trap, 7���9 m depth. Esperance Bay (-33.84, 121.91) (WAM S.89009); Mandurah: (ii) Male, 163.4 mm ML. Collected by M. Amor 12-Dec-2019 via baited trap, 22���25 m depth (-32.77, 115.53) (WAM S.89021); (iii) Male, 177.0 ML. Collected by M. Amor 12-Dec-2019 via baited trap, 22���25 m depth (-32.75, 115.51) (WAM S.89022); (iv) Female, 124.3 mm ML. Collected by M. Amor 12-Dec-2019 via baited trap, 22���25 m depth (-32.78, 115.52) (WAM S.89018); Geraldton: (v) Male, 176.1 mm ML. Collected by M. Amor 2-Dec-2019 via baited trap, 16���30 m depth (-28.83, 114.55) (WAM S.89001); (vi) Female, 149.7 mm ML. Collected by M. Amor 2-Dec-2019 via baited trap, 16���30 m depth (-28.92, 114.57) (WAM S.89006). Diagnosis. Medium to large (109���177 mm ML), muscular species. Ocelli absent. Long arms taper to narrow tips between 347���745 mm; 3.7���6 times longer than ML. All arms equal width (12.5-32.1 mm). Males right arm III hectocoltylised; shorter than opposite arm (ALR3 84���97% ALL3). Well-defined spermatophore groove ends at base of small calamus. Calamus approximates 31���49% of ligula. Small ligula (LL 1���1.6% ALR3). Biserial sucker arrangement; 182���283 suckers on non-hectocotylised arms, 169���196 hectocotlised arm suckers. Between 1���13 enlarged suckers present in both sexes; between 10 th to 23 rd proximal suckers on II and III arm pairs. Description. Based on 11 mature males and 14 sub-mature females. Mantle broad, oval shaped and saccular. Web depth 18���31% of longest arm, formula highly variable. Funnel tube shaped; free length 45���85% of total funnel length (39���66 mm). Funnel organ ���W��� shaped. 9���10 lamellae per gill demibranch. Ink sac, anal flaps present. One large papilla above each eye, 2���3 additional smaller papillae adjacent. Typical Octopus digestive tract (Fig. 4) comprising a large buccal mass connected to a pair of rounded anterior salivary glands. Posterior salivary glands curved and triangular. Narrow oesophagus leads to crop diverticulum then wide, triangular, stomach. Spiral caecum connected to large digestive glad; ink sac embedded within. Long intestine ending with muscular rectum, pair of anal flaps. Strong beak embedded within buccal mass (Fig. 5A & 5B). Radula comprises rows of seven teeth, two marginal plates. Rhachidian tooth, 2���3 cusps migrating laterally, and asymmetrically over four rows. Pattern offset by two rows (WAM S89017; Fig. 5C). Spawned eggs 2.5 mm long, 1 mm wide. Larvae planktonic. Mature male testis, large (Fig. 6A), narrow vas deferens opens into a round mucilage gland, then long, curved spermatophore gland (Fig 6B & 6C). Spermatophore sac connected, 32���111 spermatophores within. Spermatophores long (to 50 mm), and narrow (0.6���0.7 mm). Terminal organ 13���24% of ML. Diverticulum elongate, oval-shaped (5���14 mm). Ovaries to 28 g (sub-mature). Short proximal oviducts, lead to spherical oviductal glands and distal oviducts (Fig. 6D). Rough skin texture, distinct patches. Live specimens display mottled colour pattern, vary in colour from oceanic (reddish-brown/orange) to estuarine habitats (green/brown tint). Characteristic orange colouration along arm edge; often displayed while denned. Colour muted by preservation. Distribution. Shark Bay (northernmost distribution; approx. -25.51, 112.87) to Cape Le Grand (southeast; approx. -33.94, 122.55), Western Australia (Fig. 1). Depth to 80 m. Mean sea surface temperatures from ~25���17 (Fig. S1; Huang et al. 2017). Etymology. Octopus djinda, sp. nov, the star octopus, is distributed along the southwest coast of Australia. This distribution closely reflects the territory of the traditional custodians of this land, the Nyoongar people (���a person of the southwest of Western Australia���). To recognise their connection to this land, a Nyoongar translation of ���star��� (djinda), as described by Whitehurst (1997), was selected as a species name. This use of ���star��� (luminous) reflects the shared recent ancestry with, and now-understood distinction from, O. tetricus (Latin: gloomy octopus). Consultation with the Aboriginal community regarding the use of ���djinda��� as a species name was undertaken via the Western Australian Museum���s Aboriginal Advisory Committee (WAMAAC). Initial documentation, including the above etymology statement, was presented to the committee on Friday July 2, 2021. Support was provided on July 14, 2021. Remarks. Greater, and non-overlapping, sucker numbers on hectocotylised arm delimit O. djinda, sp. nov. (169���196) from O. tetricus (122���150; Amor et al. 2017) and O. sinensis d���Orbigny, 1841 from Asia (119���152; Gleadall 2016), but not Kermadec Is. (178���185; Reid & Wilson, 2015). Disjunct distributions reflect species identity among O. djinda, O. tetricus and O. sinensis, which form a monophyletic clade within the O. vulgaris group (Amor et al. 2019). A 399 bp fragment of the COI gene was sequenced to complement visual identification. Sequence data from 16 individuals, that were of sufficient quality, were retained and represented a single haplotype. 349 bases overlapped with existing accessions for O. tetricus and O. cf. tetricus. 13 polymorphisms along 349 bp partial COI sequence (3.7% divergence) reliably distinguish O. djinda, sp. nov. from O. tetricus; interspecific variation nine times greater than intraspecific differences. Four characteristic large papillae form a diamond pattern on the dorsal mantle, typical for the O. vulgaris species-group. Funnel organ was difficult to see in most specimens., Published as part of Amor, Michael D. & Hart, Anthony M., 2021, Octopus djinda (Cephalopoda: Octopodidae): a new member of the Octopus vulgaris group from southwest Australia, pp. 145-156 in Zootaxa 5061 (1) on pages 148-151, DOI: 10.11646/zootaxa.5061.1.7, http://zenodo.org/record/5642369, {"references":["Joll, L. M. (1976) Mating, egg-laying and hatching of Octopus tetricus (Mollusca: Cephalopoda) in the laboratory. Marine Biology, 36 (4), 327 - 333. https: // doi. org / 10.1007 / BF 00389194","Joll, L. M. (1977) Growth and food intake of Octopus tetricus (Mollusca: Cephalopoda) in aquaria. Marine and Freshwater Research, 28 (1), 45 - 56. https: // doi. org / 10.1071 / MF 9770045","Joll, L. M. (1978) Observations on the embryonic development of Octopus tetricus (Mollusca: Cephalopoda). Marine and freshwater research, 29 (1), 19 - 30. https: // doi. org / 10.1071 / MF 9780019","Kirkman, H., Humphries, P. & Manning, R. (1991) The epibenthic fauna of seagrass beds and bare sand in Princess Royal Harbour and King George Sound, Albany, south-western Australia. Western Australian Museum, Perth, pp. 553 - 563.","Stranks, T. N. (1998) The systematic and nomenclatural status of the Octopodinae described from Australia (Mollusca: Cephalopoda). Smithsonian Contributions to Zoology, 586, 529 - 548.","Guerra, A., Roura, A., Gonzalez, A. F., Pascual, S., Cherel, Y. & Perez-Losada, M. (2010) Morphological and genetic evidence that Octopus vulgaris Cuvier, 1797 inhabits Amsterdam and Saint Paul Islands (southern Indian Ocean). ICES Journal of Marine Science, 67 (7), 1401 - 1407. https: // doi. org / 10.1093 / icesjms / fsq 040","Acosta-Jofre, M. S., Sahade, R., Laudien, J. & Chiappero, M. B. (2012) A contribution to the understanding of phylogenetic relationships among species of the genus Octopus (Octopodidae: Cephalopoda). Scientia Marina, 76 (2), 311 - 318. https: // doi. org / 10.3989 / scimar. 03365.03 B","Reid, A. L. & Wilson, N. G. (2015) Octopuses of the Kermadec Islands: Discovery and description of a new member of the Octopus ' vulgaris' complex (O. jollyorum, sp. nov.) and the first description of a male Callistoctopus kermadecensis (Berry, 1914) Bulletin of the Auckland Museum, 20, 349 - 368.","Greenwell, C. N., Loneragan, N. R., Admiraal, R., Tweedley, J. R. & Wall, M. (2019) Octopus as predators of abalone on a sea ranch. Fisheries Management and Ecology, 26 (2), 108 - 118. https: // doi. org / 10.1111 / fme. 12328","Roper, C. F. (1997) Experimental octopus fisheries: two case studies. California Sea Grant, Special Publication. In: Lang, M. A. & Hochberg, F. G. (Eds.), Proceedings of the workshop on the fishery and market potential of Octopus in California. Smithsonian Institute, Washington, D. C., pp. 157 - 168.","Norman, M. & Reid, A. (2000) Guide to squid, cuttlefish and octopuses of Australasia. CSIRO Publishing, Melbourne, 96 pp. https: // doi. org / 10.1071 / 9780643101098","Finn, J. K., Hochberg, F. G. & Norman, M. D. (2005) Phylum Dicyemida in Australian waters: First record and distribution across diverse cephalopod hosts. Phuket Marine Biology Research Center Bulletin, 66 (8), 96.","Guzik, M. T., Norman, M. D. & Crozier, R. H. (2005) Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Molecular Phylogenetics and Evolution, 37 (1), 235 - 248. https: // doi. org / 10.1016 / j. ympev. 2005.05.009","Norman, M. D. & Hochberg, F. G. (2005) The current state of octopus taxonomy. Phuket Marine Biological Center Research Bulletin, 66, 127 - 154.","Amor, M. D., Norman, M. D., Cameron, H. E. & Strugnell, J. M. (2014) Allopatric speciation within a cryptic species complex of Australasian octopuses. Plos One, 9 (6), e 98982 .. https: // doi. org / 10.1371 / journal. pone. 0098982","Hart, A. M., Leporati, S. C., Marriott, R. J. & Murphy, D. (2016) Innovative Development of the Octopus (cf) tetricus fishery in Western Australia. FRDC Project No 2010 / 200. Fisheries Research Report. No. 270. Department of Fisheries, Western Australia, 120 pp.","Reid, A. (2016) Cephalopods of Australia and sub-Antarctic territories. CSIRO Publishing, Melbourne, 446 pp. https: // doi. org / 10.1071 / 9781486303946","Amor, M. D., Norman, M. D., Roura, A., Leite, T. S., Gleadall, I. G., Reid, A., Perales-Raya, C., Lu, C. C., Silvey, C. J., Vidal, E. A. G., Hochberg, F. G., Zheng, X. D. & Strugnell, J. M. (2017) Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zoologica Scripta, 46 (3), 275 - 288. https: // doi. org / 10.1111 / zsc. 12207","Sauer, W. H., Gleadall, I. G., Downey-Breedt, N., Doubleday, Z., Gillespie, G., Haimovici, M., Ibanez, C. M., Katugin, O. N., Leporati, S., Lipinski, M. R., Markaida, U., Ramos, J. E., Rosa, R., Villanueva, R., Arguelles, J., Briceno, F. A., Carrasco, S. A., Che, L. J., Chen, C. S., Cisneros, R., Conners, E., Crespi-Abril, A. C., Kulik, V. V., Drobyazin, E. N., Emery, T., Fernandez-Alvarez, F. A., Furuya, H., Gonzalez, L. W., Gough, C., Krishnan, P., Kumar, B., Leite, T., Lu, C. C., Mohamed, K. S., Nabhitabhata, J., Noro, K., Petchkamnerd, J., Putra, D., Rocliffe, S., Sajikumar, K. K., Sakaguchi, H., Samuel, D., Sasikumar, G., Wada, T., Zheng, X., Tian, Y., Pang, Y., Yamrungrueng, A. & Pecl, G. (2020) World octopus fisheries. Reviews in Fisheries Science & Aquaculture, 29 (3), 279 - 429. https: // doi. org / 10.1080 / 23308249.2019.1680603","Somaweera, R. & Somaweera, R. (2021) Nuclear-follower foraging behaviour between Western Australian common octopus and brown-spotted wrasse. Marine and Freshwater Research. https: // doi. org / 10.1071 / MF 21059","Hart, A. M., Murphy, D., Hesp, S. A. & Leporati, S. (2019) Biomass estimates and harvest strategies for the Western Australian Octopus aff. tetricus fishery. ICES Journal of Marine Science, 76 (7), 2205 - 2217. https: // doi. org / 10.1093 / icesjms / fsz 146","Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S. & Zhang, H. (2017) NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information Available from: https: // psl. noaa. gov / data / gridded / data. noaa. ersst. v 5. html (accessed 10 August 2021) https: // doi. org / 10.7289 / V 5 T 72 FNM","Whitehurst, R. (1997) Noongar Dictionary. 2 nd Edition. Noongar Language and Cultural Centre, Perth, 53 pp. Available from: https: // www. noongarculture. org. au / noongar-dictionary-by-rose-whitehurst (accessed 1 November 2019)","Gleadall, I. G. (2016) Octopus sinensis d'Orbigny, 1841 (Cephalopoda: Octopodidae): valid species name for the commercially valuable East Asian common octopus. Species Diversity, 21 (1), 31 - 42. https: // doi. org / 10.12782 / sd. 21.1.031","Amor, M. D., Doyle, S. R., Norman, M. D., Roura, A., Hall, N. E., Robinson, A. J., Leite, T. S. & Strugnell, J. M. (2019) Genomewide sequencing uncovers cryptic diversity and mito-nuclear discordance in the Octopus vulgaris species complex. BioRxiv preprint. [published online] https: // doi. org / 10.1101 / 573493"]}