1. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice.
- Author
-
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, and Ehninger D
- Subjects
- Mice, Animals, Male, Mice, Inbred C57BL, Phenotype, Longevity genetics, Aging physiology
- Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF