1. COMMD3 loss drives invasive breast cancer growth by modulating copper homeostasis
- Author
-
Janelle L. Hancock, Murugan Kalimutho, Jasmin Straube, Malcolm Lim, Irma Gresshoff, Jodi M. Saunus, Jason S. Lee, Sunil R. Lakhani, Kaylene J. Simpson, Ashley I. Bush, Robin L. Anderson, and Kum Kum Khanna
- Subjects
Breast cancer ,Tumour suppressor ,3D screen ,COMMD3 ,Copper signalling ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. Methods As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated ‘3D on-top cellular assay’ to identify novel growth suppressive mechanisms. Results A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p
- Published
- 2023
- Full Text
- View/download PDF