IntroductionAppropriate and effective decolorization of raw and thin juice in sugar refineries is considered as an important process to obtain premium quality sugar, which due to the problems of its conventional process, membrane processes as effective and environmentally friendly processes can be used in parts of sugar industries. Among the disadvantages of the usual methods to remove membrane fouling, it can be mentioned the destruction of the membrane, environmental pollution, the remaining detergents in the membrane and the product, especially in the pharmaceutical and food industries, and the increase in production costs. Therefore, it seems that physical methods such as pre-filtration of the incoming feed, using turbulent and pulse currents to prevent excessive compression of the gel layer formed on the membrane surface are more effective and have fewer disadvantages. One of the ways to change the flow of feed entering the membrane surface is bubbling, which causes mixing the flow and increases the tangential shear stress. In fact, the hydrodynamic force that creates bubbles causes both the dragging force and the lifting force and leads to the removal of fouling and reducing the phenomenon of concentration polarization. Materials and Methods In this research, an ultrafiltration membrane (MWCO=10 KDa) pilot with a flat module (effective surface 40 square centimeters) was used to purify raw beet juice (which had passed a stage of pre-treatment with microfiltration) at the temperature of about 30 degrees Celsius and a trans membrane pressure of 3.5 bar during the process. Nitrogen gas in the amount of 0.5, 1 and 1.5 liters per minute was used in two continuous and interrupted modes for bubbling. In this way, in the interrupted mode, after every 3 minutes of filtration, the filtration process was carried out with gas for one minute. The factors such as flux, fouling and membrane resistance as membrane efficiency's factors and parameters like color, purity and turbidity as purification factors was investigated in the form of a completely random design and compared with control filtration conditions (without bubble generation). The results of this research were statistically analyzed using SAS (version 1.9) and Microsoft Office Excel 2019 software. The average data of each test in three repetitions was compared with the least significant difference (LSD) test at the 95% level. Results and DiscussionIncreasing the amount of gas during the bubbling process improved the flow rate. Also, the results showed that the decreasing trend of the permeate flux at the gassing rate of 1.5 L/min was less than other treatments and more stable conditions were seen in the sap flux during the process. Also, the amount of flux in the interrupted form of bubbling showed that after the application of bubbling, although the amount of flux increased, but after that, during the ultra-refining process, the flux decreased again and did not remain constant at that level. But in general, despite the fact that the average flux was higher in the continuous process compared to the interrupted state, there was no significant difference between them. The results related to the amount of membrane fouling after applying the process showed that by applying bubble generation in both continuous and interrupted mods, the fouling was significantly reduced compared to the usual state of ultrafiltration. Also, as the amount of gas entering the feed stream increased, the membrane fouling decreased, which was slightly higher in the continuous state than in the interrupted mod. The overall hydrodynamic resistance of the membrane in different filtration modes showed that the difference between the overall resistance of the membrane in the ultrafiltration and the ultrafiltration process with gasification is quite significant. However, although the overall resistance of the membrane in the interrupted gassing state is higher than its continuous state due to more clogging, there is no significant difference between them (P