1. A Compact Electronically Tunable Meminductor Emulator Model and Its Application.
- Author
-
Sharma, Pankaj Kumar, Ranjan, Rajeev Kumar, and Kang, Sung-Mo
- Abstract
A compact MOSFET-C floating/grounded meminductor emulator (MIE) model is presented for high operating frequency and low power operation. The proposed MIE uses only 22 MOSFETs and two capacitors. Its performance is theoretically analyzed and rigorously verified using the Cadence Virtuoso software and hardware prototypes. The proposed MIE operates appropriately for a wide range of frequencies up to 5 MHz with $590 \mu \text{W}$ power consumption at a 180nm CMOS technology node and manifests important signature properties. The MIE layout area in 180 nm CMOS technology is $13107.5 \mu \text{m}^{2}$. To analyze the effects of statistical variations in MIE elements, extensive Monte Carlo simulations have been performed to demonstrate the robustness of the proposed MIE. For experimental validation, hardware prototypes have been developed and tested successfully. An MIE-based adaptive learning neuromorphic circuit is presented to show that it can mimic the behavioral responses of amoeba under varying environments such as temperature. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF