132 results on '"Morek, Witold"'
Search Results
2. Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia
- Author
-
Morek, Witold, Surmacz, Bartlomiej, Michalczyk, Łukasz, and Pensoft Publishers
- Subjects
developmental variability ,DNA barcoding ,integrative description ,M. almatyense ,M. reductum ,Phylogeny - Published
- 2020
3. Rough backs: taxonomic value of epicuticular sculpturing in the genus Milnesium Doyère, 1840 (Tardigrada: Apochela)
- Author
-
Morek, Witold, Wałach, Karol, and Michalczyk, Łukasz
- Published
- 2022
- Full Text
- View/download PDF
4. Description of Milnesium pentapapillatum sp. nov., with an amendment of the diagnosis of the order Apochela and abolition of the class Apotardigrada (Tardigrada)
- Author
-
Morek, Witold, Ciosek, Joanna A., and Michalczyk, Łukasz
- Published
- 2020
- Full Text
- View/download PDF
5. What is a ‘strong’ synapomorphy? Redescriptions of Murray’s type species and descriptions of new taxa challenge the systematics of Hypsibiidae (Eutardigrada: Parachela)
- Author
-
Gąsiorek, Piotr, Blagden, Brian, Morek, Witold, Michalczyk, Łukasz, Gąsiorek, Piotr, Blagden, Brian, Morek, Witold, and Michalczyk, Łukasz
- Abstract
Hypsibiidae are the most species-rich group within the Hypsibioidea, and three (Diphasconinae, Itaquasconinae, and Pilatobiinae) of its four subfamilies are characterized by a division of the foregut into a rigid buccal and a flexible pharyngeal tube. The aim of this work is to provide a comprehensive background for sound taxonomic studies on several hypsibiid lineages. We redescribe the type species for the genera Adropion, Guidettion, and Platicrista, and provide diagnostic keys for several genera. We also demonstrate that the presence of an apodeme at the border of the buccal and pharyngeal tube is not a discriminative criterion separating Diphasconinae from Itaquasconinae and that the apodeme does not have a uniform morphology among Hypsibiidae. Itaquascon serratulum sp. nov. (Uganda) is the first integratively described species in the genus. Furthermore, new species of Platicrista are described: Platicrista borneensis sp. nov. (Malaysia), Platicrista carpathica sp. nov. (Poland), and Platicrista nivea sp. nov. (Taiwan). Moreover, Raribius minutissimus sp. nov. (Scotland) is described from leaf litter. Finally, Pilatobius is divided into four morphogroups by cuticular sculpturing and dorsal gibbosities, which serve as decisive criteria; two received phylogenetic support and are erected as Degmion gen. nov. (the oculatus group) and Fontourion gen. nov. (the recamieri group).
- Published
- 2024
6. Tardigrade Augean stables — a challenging phylogeny and taxonomy of the family Ramazzottiidae (Eutardigrada: Hypsibioidea)
- Author
-
Dey, Pritam K., López-López, Alejandro, Morek, Witold, Michalczyk, Łukasz, Dey, Pritam K., López-López, Alejandro, Morek, Witold, and Michalczyk, Łukasz
- Abstract
Tardigrade taxonomy is most often hindered by prevalent outdated species descriptions, lack of integrative redescriptions, scarce genetic information, and fragmentary sampling. Here, we diagnose the problems obscuring phylogenetic inference and the taxonomy of the cosmopolitan family Ramazzottiidae. We carried out the most extensive phylogenetic analysis of this family to date, with a considerable influx of new genetic data from poorly sampled regions of the world. We found two new distinct evolutionary lineages defined by distinct morphological traits (dorsal cuticular sculpturing and/or body shape), characterized by restricted geographic distributions, and we delineated them as new species complexes: the Neotropical Ramazzottius baumanni complex and the Afro-Oriental Ramazzottius szeptyckii complex. Nevertheless, we could not confidently ascertain the taxonomic status of both complexes due to: (i) the current state of the ramazzottiid taxonomy, with outdated and/or imprecise species descriptions with heterogeneous terminology and, in many cases, without accounting for intraspecific variation; (ii) the missing genetic information for key taxa; and (iii) the possible lack of monophyly of Cryoconicus and Ramazzottius as suggested by our results. In addition to diagnosing the problems of ramazzottiid phylogeny and systematics, we also propose possible solutions that could accelerate the progress in our understanding of the evolution of this group.
- Published
- 2024
7. Tardigrade Augean stables—a challenging phylogeny and taxonomy of the family Ramazzottiidae (Eutardigrada: Hypsibioidea)
- Author
-
Dey, Pritam K, primary, López-López, Alejandro, additional, Morek, Witold, additional, and Michalczyk, Łukasz, additional
- Published
- 2023
- Full Text
- View/download PDF
8. What is a ‘strong’ synapomorphy? Redescriptions of Murray’s type species and descriptions of new taxa challenge the systematics of Hypsibiidae (Eutardigrada: Parachela)
- Author
-
Gąsiorek, Piotr, primary, Blagden, Brian, additional, Morek, Witold, additional, and Michalczyk, Łukasz, additional
- Published
- 2023
- Full Text
- View/download PDF
9. An integrative redescription of Echiniscus testudo (Doyère, 1840), the nominal taxon for the class Heterotardigrada (Ecdysozoa: Panarthropoda: Tardigrada)
- Author
-
Gąsiorek, Piotr, Stec, Daniel, Morek, Witold, and Michalczyk, Łukasz
- Published
- 2017
- Full Text
- View/download PDF
10. Taxonomic review of the tribe Syntomini (Lepidoptera: Erebidae: Arctiinae) in Korea
- Author
-
Przybyłowicz, Łukasz, Morek, Witold, and Byun, Bong-Kyu
- Published
- 2016
- Full Text
- View/download PDF
11. Phylogenetic position, validity and diversity of the genus Milnesioides (Eutardigrada: Apochela).
- Author
-
Morek, Witold, Wałach, Karol, Lamond, Emerson, and Michalczyk, Łukasz
- Subjects
- *
MOLECULAR phylogeny , *PHENOTYPES , *PARSIMONIOUS models - Abstract
The order Apochela, the only exclusively carnivorous tardigrade lineage, comprises four genera, of which Milnesium contains multiple species and is common and cosmopolitan, whereas the remaining genera (Bergtrollus , Limmenius and Milnesioides) are monotypic, rare and have restricted geographical distributions. More importantly, although there are ample genetic data for numerous Milnesium species, no other apochelan genus has been sequenced so far, which limits our understanding of milnesiid evolution. In this contribution, we analysed two populations of Milnesioides from the south coast of Western Australia. The obtained molecular phylogenetic tree clearly indicated Milnesioides as a sister lineage to all remaining Milnesium species, supporting the validity of the genus. Moreover, the sister relationship of Milnesioides and Milnesium lends support to the Gondwanan origin of the order Apochela. Phenotypic differences between the type population of Milnesioides exsertum from New South Wales and the populations from Western Australia analysed in this study suggest that the latter represent a new species. The new data and morphological differences between populations reported in the original description of Milnesioides strongly suggest that the genus is not monotypic. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
12. Tardigrade Augean stables—a challenging phylogeny and taxonomy of the family Ramazzottiidae (Eutardigrada: Hypsibioidea).
- Author
-
Dey, Pritam K, López-López, Alejandro, Morek, Witold, and Michalczyk, Łukasz
- Subjects
CLADISTIC analysis ,PHYLOGENY ,BIOLOGICAL classification ,SPATIAL variation ,BAYESIAN analysis - Abstract
Tardigrade taxonomy is most often hindered by prevalent outdated species descriptions, lack of integrative redescriptions, scarce genetic information, and fragmentary sampling. Here, we diagnose the problems obscuring phylogenetic inference and the taxonomy of the cosmopolitan family Ramazzottiidae. We carried out the most extensive phylogenetic analysis of this family to date, with a considerable influx of new genetic data from poorly sampled regions of the world. We found two new distinct evolutionary lineages defined by distinct morphological traits (dorsal cuticular sculpturing and/or body shape), characterized by restricted geographic distributions, and we delineated them as new species complexes: the Neotropical Ramazzottius baumanni complex and the Afro-Oriental Ramazzottius szeptyckii complex. Nevertheless, we could not confidently ascertain the taxonomic status of both complexes due to: (i) the current state of the ramazzottiid taxonomy, with outdated and/or imprecise species descriptions with heterogeneous terminology and, in many cases, without accounting for intraspecific variation; (ii) the missing genetic information for key taxa; and (iii) the possible lack of monophyly of Cryoconicus and Ramazzottius as suggested by our results. In addition to diagnosing the problems of ramazzottiid phylogeny and systematics, we also propose possible solutions that could accelerate the progress in our understanding of the evolution of this group. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. Echiniscidae (Heterotardigrada) of South Africa
- Author
-
GĄSIOREK, PIOTR, primary, VONČINA, KATARZYNA, additional, BOCHNAK, MARCIN, additional, SURMACZ, BARTŁOMIEJ, additional, MOREK, WITOLD, additional, and MICHALCZYK, ŁUKASZ, additional
- Published
- 2022
- Full Text
- View/download PDF
14. African cornucopia: discovering the Milnesium (Tardigrada: Apochela) biodiversity by the means of integrative taxonomy
- Author
-
Wałach, Karol, Morek, Witold, and Łukasz Michalczyk
- Published
- 2022
- Full Text
- View/download PDF
15. Reaching the Monophyly: Re-Evaluation of the Enigmatic Species Tenuibiotus hyperonyx (Maucci, 1983) and the Genus Tenuibiotus (Eutardigrada)
- Author
-
Stec, Daniel, primary and Morek, Witold, additional
- Published
- 2022
- Full Text
- View/download PDF
16. “Everything is not everywhere”: Time‐calibrated phylogeography of the genus Milnesium (Tardigrada)
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, López‐López, Alejandro, additional, and Michalczyk, Łukasz, additional
- Published
- 2021
- Full Text
- View/download PDF
17. Figure 2 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
18. Figure 1 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
19. Figure 5 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
20. Figure 4 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
21. Supplementary material 1 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
22. Supplementary material 2 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
23. Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Figure 3 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
25. Figure 6 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
26. Supplementary material 3 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
27. Supplementary material 4 from: Morek W, Surmacz B, Michalczyk Ł (2020) Novel integrative data for two Milnesium Doyère, 1840 (Tardigrada: Apochela) species from Central Asia. Zoosystematics and Evolution 96(2): 499-514. https://doi.org/10.3897/zse.96.52049
- Author
-
Morek, Witold, primary, Surmacz, Bartłomiej, additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
28. The analysis of inter- and intrapopulation variability of Milnesium eurystomum Maucci, 1991 reveals high genetic divergence and a novel type of ontogenetic variation in the order Apochela
- Author
-
Morek, Witold, primary, Blagden, Brian, additional, Kristensen, Reinhardt M., additional, and Michalczyk, Łukasz, additional
- Published
- 2020
- Full Text
- View/download PDF
29. The analysis of inter- and intrapopulation variability of Milnesium eurystomum Maucci, 1991 reveals high genetic divergence and a novel type of ontogenetic variation in the order Apochela
- Author
-
Morek, Witold, Blagden, Brian, Kristensen, Reinhardt M., Michalczyk, Łukasz, Morek, Witold, Blagden, Brian, Kristensen, Reinhardt M., and Michalczyk, Łukasz
- Abstract
Tardigrada are a phylum of cosmopolitan invertebrates inhabiting both terrestrial and marine ecosystems. The carnivorous species are usually characterized by a wide buccal tube, which constitutes the first and rigid part of the digestive system. Among tardigrades, only the genusMilnesiumis considered exclusively carnivorous and includes the largest known species in the phylum. Some members of the genus exhibit developmental variability in taxonomically important morphological traits such as the number of points on the secondary branches of claws and cuticular sculpturing.Milnesium eurystomumis one of the largest tardigrades, with body length reaching 1.2 mm, and it is equipped with an exceptionally wide buccal tube, enabling this animal to feed on various prey, including other tardigrade species. Importantly,M. eurystomum, as well as other species with wide buccal tubes, were described solely using mature females, thus their developmental variability remains unknown. Interestingly, smallMilnesiumspecimens with remarkably wide buccal tubes have never been reported, raising a question of whether such hatchlings and juveniles (first and second life stages) are extremely rare and simply have never been reported, or their buccal apparatus morphology is different from adults and thus constitutes as an undescribed buccal tube developmental variability. To answer this question, we analysed four populations ofM. eurystomumoriginating from Greenland, Svalbard and Scotland. Due to discrepancies in species delineation based on different types of data, we parallelly applied various methods of species delimitation, both morphological and molecular. Thanks to ontogenetic analysis, we show and describe a novel type of developmental variability in the size and shape of the buccal tube. We also provide novel morphological traits and data for this species, together with the first record and characterization of males. Finally, we discuss the consequences of our findings for the taxo
- Published
- 2020
30. Fractonotus verrucosus Gąsiorek & Morek & Stec & Blagden & Michalczyk 2019, n. comb
- Author
-
Gąsiorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, Łukasz
- Subjects
Microhypsibiidae ,Eutardigrada ,Parachela ,Fractonotus verrucosus ,Tardigrada ,Animalia ,Biodiversity ,Fractonotus ,Taxonomy - Abstract
Fractonotus verrucosus (Richters, 1900) n. comb. Macrobiotus ornatus var. verrucosus Richters, 1900: 41 (terra typica: Taunus, Germany). Macrobiotus scabrosus Murray, 1911: 10 (locus typicus: Clare Island, Ireland). Hypsibius verrucosus – Thulin 1911: 29 (Kiruna, Lapland, Sweden). — Marcus 1928: 180 (Vannsee, Berlin, Germany). — Cuénot 1932: 77 (the Vosges, France and Switzerland). — da Cunha 1947, 1948: 6, 2 (Serra d’Arga, Serra do Buçaco, Serra da Estrela, Serra da Lousã, Portugal). Calohypsibius verrucosus – Thulin 1928: 239 (Sweden). Calohypsibius scabrosus Thulin, 1928: 239 (Sweden). Hypsibius scabrosus Cuénot, 1932: 77 (the Vosges, France and Switzerland). — da Cunha 1947, 1948: 6, 2 (Serra d’Arga, Serra do Buçaco, Serra da Estrela, Serra da Lousã, Portugal). Hypsibius (Calohypsibius) verrucosus – Marcus 1936: 285 (Schwarzwald, Germany). — Franceschi 1951-1952: 12 (Val Camonica, Italy). — Mihelčič 1953: 247 (Tirol, Austria). — Fontoura 1981: 18 (Viseu, Arga, Amarante, Portugal). Hypsibius placophorus da Cunha, 1943: 1 (locus typicus: Cabril do Ceira, Portugal); 1947, 1948: 2, 2 (Serra d’Arga, Serra do Buçaco, Serra da Estrela, Serra da Lousã, Portugal) n. syn. LOCALITIES. — Scotland. Creag Meagaidh (56°57’10’’ N, 4°30’35’’ W; 291 m a.s.l.; collection date: 1.X.2014), lichens from moorland rocks; Scotland, Hebrides, Isle of Lewis, Loch nan Muilne (58°21’08’’ N, 6°35’14’’ W; 27 m a.s.l.; collection date: 29.VII.2015), moss and lichen mix from stones on the lakeshores; Invermoriston, Loch Ness (57°12’39’’ N, 4°35’59’’ W; 20 m a.s.l.; 25.X.2015; Brian Blagden leg.), moss and lichen mix from stones on the lakeshores. MATERIAL EXAMINED. — 23 individuals, UJ (19 specimens, including one simplex, on slides GB.005.03-12, GB.008.01-3, GB.028.01- 2 and 4 specimens on two SEM stubs); 2 individuals, MNHN (slides GB.005.01-2); 3 individuals, NHMD (slides GB.008.04- 5); 2 individuals, UAM (slides GB.028.03-4); 1 individual, CU (slide GB.028.02). ETYMOLOGY (NOT PROVIDED IN THE ORIGINAL DESCRIPTION). — The name most likely refers to the rugged cuticular surface of the species (from Latin verruca = wart). DIFFERENTIAL DIAGNOSIS. — Fractonotus verrucosus n. comb. can be distinguished from F. caelatus and F. gilvus n. comb. (Fig. 2 A, B) by the presence of plaques (absent in the latter species). It also differs from F. gilvus n. comb. by shorter, stouter claws (anterior and posterior primary branches 4.1-6.4 μm [N =10] and 4.3-7.4 μm long [N =18], respectively, in Fractonotus verrucosus n. comb. vs 7.0- 13.0 μm [N =21] and 10.5-16.5 μm long [N =21], respectively, in F. gilvus n. comb.; compare Fig. 11 A-D). INTEGRATIVE DESCRIPTION Animals (see Table 3 for measurements) Body stubby, typically slightly rose in live animals, transparent in mounted specimens. Dorsum strongly sculptured from the first instar, although with substantial ontogenetic quantitative and qualitative variability in this trait (Fig. 1 A- F). Juveniles with ten transverse bands of numerous tu- bercles that increase in size towards the caudal end of the body, but fully formed plaques never present, legs covered with fine tubercles (Fig. 1 A). All ten bands not always easily identifiable under PCM in juveniles. In young adults, plaques present in bands 6-10, with the most prominent plaques in bands 8-10 (Fig. 1 B). In older adults, smooth spaces between the transverse bands becoming narrow and sometimes merge into larger areas (Fig. 1 C-F). Plaques larger and more numerous than in young adults, and typically developping in bands 4-10, but the most evident plaques present in the caudal part of the body (Fig.1 C-F). Tubercles more or less round or oval (Figs 3 A, B; 5 A, B), gradually increasing in size from juveniles to adults, and becoming scabrous with age (compare Figs 1 A-F; 5 A, B). Plaques, on the other hand, typically smooth and only sometimes slightly rough (Fig. 5 C, D, arrowheads); under stereomicroscope strongly opalescent. Plaques arranged symmetrically in respect to the longitudinal body axis, although deviations A from symmetry are not rare (Fig. 1 C, D). In adults, seven pairs of central plaques and four lateral plaque pairs. Central plaques triangular in shape, with their apices directed laterally and outwards. In rows where only central plaques are present, plaques slimmer and longer than in rows with lateral plaques. Central plaques present in bands aligned with legs I-III as well as in bands between those legs. First three pairs of lateral plaques in line with legs I-III and the last pair of double lateral plaques situated between legs III and IV (Fig. 1 E). Plaque configuration VII:4-2-4-2-4-2-6. Cephalic elliptical organs present but not easy to identify, given the rich cuticular sculpturing (Fig. 7 A). Eyes absent in live animals. Buccal apparatus of the Fractonotus - type (Fig. 7 B, C, E), i.e. with a long ventral AISM, and the dorsal AISM subdivided into the proximal, weakly developed thickening, and the distal, small blunt hook (Fig. 9 A). Mouth opening surrounded by six large and soft peribuccal lobes (visible only under SEM, Fig. 6 A). Oral cavity armature, visible only under SEM, consisting of a single row of minute conical teeth located on the ring fold (Fig. 8 A). Two distinct porous areas on the lateral sides of the buccal crown are visible in SEM only (Fig. 8 B). Stylet furcae of the modified Hypsibius shape, i.e. with very broad and trapezoid bases, thick arms and rounded apices (Figs 7 B, 8 D, 10 A). Buccal tube with slight lateral thickenings posterior to the stylets supports (Figs 7 B, C, E; 8 C). Round bulbus with large pharyngeal apophyses (almost as large as the placoids), and two granular macroplacoids (Figs 7 B, C, E; 8 E, F). In PCM, macroplacoids without constrictions, however slight central constrictions in both macroplacoids detectable under SEM (Fig. 8 E, F). Claws of the modified Isohypsibius - type (Figs 11 A-C; 12 A, B). Specifically, claw bases triangular, especially pronounced in claws IV (Figs 11 C, 12 B). Claw branches V-shaped, elongated and strongly curved. Apparent accessory points on the primary branches (Figs 11 A-C; 12 A, B). Weakly developed pseudolunulae present, particularly visible under the internal and anterior claws (Fig. 11 A, C). Claw septa and cuticular bars on legs absent. Eggs Roundish and smooth, deposited in exuviae (up to two eggs per exuvia recorded). MOLECULAR MARKERS The sequences for all DNA markers were of a good quality. The sequenced fragments were of the following lengths: 1.727 bp (18 S rRNA; MG 800855), 819 bp (28 S rRNA; MG 800856), and 499 bp (ITS-2; MG 800857). All markers, including the specimen without cuticular plaques, were represented by single haplotypes. The p-distances between 18S haplotypes of all available isohypsibioid species and Fractonotus verrucosus n. comb. ranged from 2.0% (I. prosostomus Thulin, 1928, EF 620404 from Denmark) to 7.1% (Hexapodibius micronyx Pilato, 1969, HQ 604915 from Italy), with an average distance of 5.2%. As our 28S rRNA primers obtain a different gene fragment to the one sequenced by previous authors, comparisons of this gene were not possible. Matrices with p-distances are provided in the Supplementary Material 2. REMARKS The vast part of the Richters Collection has been lost, thus the type material (if ever existed) is not available for examination. Moreover, no specimens from Germany were examined in this study, therefore the neotype series is not established. Hence, until the redescription from the terra typica in Germany is available, we propose to consider the description of the Scottish specimens only as the current perception of the species. PHYLOGENETIC POSITION OF FRACTONOTUS AMONG OTHER ISOHYPSIBIIDAE Both Bayesian Inference and Maximum Likelihood methods unreservedly located Fractonotus within Isohypsibioidea (Fig. 13), thus corroborating the phenotypic analysis (see above). The genus Isohypsibius s.s. (i.e. I. prosostomus and its closest relatives) appears paraphyletic with respect to Fractonotus. However, in general, all isohypsibioid lineages clearly remain in polytomy, with only the occasional sound Bayesian posterior probabilities characterising clades with morphologically similar taxa. Therefore, the exact relationships between different isohypsibioid clades remain unsolved.
- Published
- 2019
- Full Text
- View/download PDF
31. Fractonotus gilvus G��siorek & Morek & Stec & Blagden & Michalczyk 2019, n. comb
- Author
-
G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, ��ukasz
- Subjects
Microhypsibiidae ,Fractonotus gilvus ,Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Fractonotus ,Taxonomy - Abstract
Fractonotus gilvus (Biserov, 1986) n. comb. Isohypsibius gilvus Biserov, 1986: 984. REMARK Elliptical organs not always visible due to developed sculpturing in the cephalic portion of the body., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on page 83, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["BISEROV V. I. 1986. - Terrestrial water bears from the North Caucasus. 2. Eutardigrada. Zoologicheskii Zhurnal 65 (7): 981 - 993."]}
- Published
- 2019
- Full Text
- View/download PDF
32. Microhypsibius Thulin 1928
- Author
-
Gąsiorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, Łukasz
- Subjects
Microhypsibiidae ,Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Taxonomy ,Microhypsibius - Abstract
Genus Microhypsibius Thulin, 1928 DIAGNOSIS. ��� Same as for the family Microhypsibiidae. ETYMOLOGY (NOT PROVIDED IN THE ORIGINAL DESCRIPTION). ��� The name was most likely chosen to underline the minute size of the family members. COMPOSITION. ��� Microhypsibius bertolanii Kristensen, 1982, M. japonicus Ito, 1991, M. minimus Kristensen, 1982, M. truncatus Thulin, 1928 (type species). REMARKS See Kristensen (1982) for the most current depiction of the genus Microhypsibius., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on page 84, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["THULIN G. 1928. - Uber die phylogenie und das system der tardigraden. Hereditas 11: 207 - 266.","KRISTENSEN R. M. 1982. - New aberrant eutardigrades from homothermic springs on Disko Island, West Greenland. In: Nelson, D. R. (ed.), Proceedings of the Third International Symposium on the Tardigrada, 1980, 203 - 220."]}
- Published
- 2019
- Full Text
- View/download PDF
33. Fractonotus verrucosus G��siorek & Morek & Stec & Blagden & Michalczyk 2019, n. comb
- Author
-
G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, ��ukasz
- Subjects
Microhypsibiidae ,Eutardigrada ,Parachela ,Fractonotus verrucosus ,Tardigrada ,Animalia ,Biodiversity ,Fractonotus ,Taxonomy - Abstract
Fractonotus verrucosus (Richters, 1900) n. comb. Macrobiotus ornatus var. verrucosus Richters, 1900: 41 (terra typica: Taunus, Germany). Macrobiotus scabrosus Murray, 1911: 10 (locus typicus: Clare Island, Ireland). Hypsibius verrucosus ��� Thulin 1911: 29 (Kiruna, Lapland, Sweden). ��� Marcus 1928: 180 (Vannsee, Berlin, Germany). ��� Cu��not 1932: 77 (the Vosges, France and Switzerland). ��� da Cunha 1947, 1948: 6, 2 (Serra d���Arga, Serra do Bu��aco, Serra da Estrela, Serra da Lous��, Portugal). Calohypsibius verrucosus ��� Thulin 1928: 239 (Sweden). Calohypsibius scabrosus Thulin, 1928: 239 (Sweden). Hypsibius scabrosus Cu��not, 1932: 77 (the Vosges, France and Switzerland). ��� da Cunha 1947, 1948: 6, 2 (Serra d���Arga, Serra do Bu��aco, Serra da Estrela, Serra da Lous��, Portugal). Hypsibius (Calohypsibius) verrucosus ��� Marcus 1936: 285 (Schwarzwald, Germany). ��� Franceschi 1951-1952: 12 (Val Camonica, Italy). ��� Mihelčič 1953: 247 (Tirol, Austria). ��� Fontoura 1981: 18 (Viseu, Arga, Amarante, Portugal). Hypsibius placophorus da Cunha, 1943: 1 (locus typicus: Cabril do Ceira, Portugal); 1947, 1948: 2, 2 (Serra d���Arga, Serra do Bu��aco, Serra da Estrela, Serra da Lous��, Portugal) n. syn. LOCALITIES. ��� Scotland. Creag Meagaidh (56��57���10������ N, 4��30���35������ W; 291 m a.s.l.; collection date: 1.X.2014), lichens from moorland rocks; Scotland, Hebrides, Isle of Lewis, Loch nan Muilne (58��21���08������ N, 6��35���14������ W; 27 m a.s.l.; collection date: 29.VII.2015), moss and lichen mix from stones on the lakeshores; Invermoriston, Loch Ness (57��12���39������ N, 4��35���59������ W; 20 m a.s.l.; 25.X.2015; Brian Blagden leg.), moss and lichen mix from stones on the lakeshores. MATERIAL EXAMINED. ��� 23 individuals, UJ (19 specimens, including one simplex, on slides GB.005.03-12, GB.008.01-3, GB.028.01- 2 and 4 specimens on two SEM stubs); 2 individuals, MNHN (slides GB.005.01-2); 3 individuals, NHMD (slides GB.008.04- 5); 2 individuals, UAM (slides GB.028.03-4); 1 individual, CU (slide GB.028.02). ETYMOLOGY (NOT PROVIDED IN THE ORIGINAL DESCRIPTION). ��� The name most likely refers to the rugged cuticular surface of the species (from Latin verruca = wart). DIFFERENTIAL DIAGNOSIS. ��� Fractonotus verrucosus n. comb. can be distinguished from F. caelatus and F. gilvus n. comb. (Fig. 2 A, B) by the presence of plaques (absent in the latter species). It also differs from F. gilvus n. comb. by shorter, stouter claws (anterior and posterior primary branches 4.1-6.4 ��m [N =10] and 4.3-7.4 ��m long [N =18], respectively, in Fractonotus verrucosus n. comb. vs 7.0- 13.0 ��m [N =21] and 10.5-16.5 ��m long [N =21], respectively, in F. gilvus n. comb.; compare Fig. 11 A-D). INTEGRATIVE DESCRIPTION Animals (see Table 3 for measurements) Body stubby, typically slightly rose in live animals, transparent in mounted specimens. Dorsum strongly sculptured from the first instar, although with substantial ontogenetic quantitative and qualitative variability in this trait (Fig. 1 A- F). Juveniles with ten transverse bands of numerous tu- bercles that increase in size towards the caudal end of the body, but fully formed plaques never present, legs covered with fine tubercles (Fig. 1 A). All ten bands not always easily identifiable under PCM in juveniles. In young adults, plaques present in bands 6-10, with the most prominent plaques in bands 8-10 (Fig. 1 B). In older adults, smooth spaces between the transverse bands becoming narrow and sometimes merge into larger areas (Fig. 1 C-F). Plaques larger and more numerous than in young adults, and typically developping in bands 4-10, but the most evident plaques present in the caudal part of the body (Fig.1 C-F). Tubercles more or less round or oval (Figs 3 A, B; 5 A, B), gradually increasing in size from juveniles to adults, and becoming scabrous with age (compare Figs 1 A-F; 5 A, B). Plaques, on the other hand, typically smooth and only sometimes slightly rough (Fig. 5 C, D, arrowheads); under stereomicroscope strongly opalescent. Plaques arranged symmetrically in respect to the longitudinal body axis, although deviations A from symmetry are not rare (Fig. 1 C, D). In adults, seven pairs of central plaques and four lateral plaque pairs. Central plaques triangular in shape, with their apices directed laterally and outwards. In rows where only central plaques are present, plaques slimmer and longer than in rows with lateral plaques. Central plaques present in bands aligned with legs I-III as well as in bands between those legs. First three pairs of lateral plaques in line with legs I-III and the last pair of double lateral plaques situated between legs III and IV (Fig. 1 E). Plaque configuration VII:4-2-4-2-4-2-6. Cephalic elliptical organs present but not easy to identify, given the rich cuticular sculpturing (Fig. 7 A). Eyes absent in live animals. Buccal apparatus of the Fractonotus - type (Fig. 7 B, C, E), i.e. with a long ventral AISM, and the dorsal AISM subdivided into the proximal, weakly developed thickening, and the distal, small blunt hook (Fig. 9 A). Mouth opening surrounded by six large and soft peribuccal lobes (visible only under SEM, Fig. 6 A). Oral cavity armature, visible only under SEM, consisting of a single row of minute conical teeth located on the ring fold (Fig. 8 A). Two distinct porous areas on the lateral sides of the buccal crown are visible in SEM only (Fig. 8 B). Stylet furcae of the modified Hypsibius shape, i.e. with very broad and trapezoid bases, thick arms and rounded apices (Figs 7 B, 8 D, 10 A). Buccal tube with slight lateral thickenings posterior to the stylets supports (Figs 7 B, C, E; 8 C). Round bulbus with large pharyngeal apophyses (almost as large as the placoids), and two granular macroplacoids (Figs 7 B, C, E; 8 E, F). In PCM, macroplacoids without constrictions, however slight central constrictions in both macroplacoids detectable under SEM (Fig. 8 E, F). Claws of the modified Isohypsibius - type (Figs 11 A-C; 12 A, B). Specifically, claw bases triangular, especially pronounced in claws IV (Figs 11 C, 12 B). Claw branches V-shaped, elongated and strongly curved. Apparent accessory points on the primary branches (Figs 11 A-C; 12 A, B). Weakly developed pseudolunulae present, particularly visible under the internal and anterior claws (Fig. 11 A, C). Claw septa and cuticular bars on legs absent. Eggs Roundish and smooth, deposited in exuviae (up to two eggs per exuvia recorded). MOLECULAR MARKERS The sequences for all DNA markers were of a good quality. The sequenced fragments were of the following lengths: 1.727 bp (18 S rRNA; MG 800855), 819 bp (28 S rRNA; MG 800856), and 499 bp (ITS-2; MG 800857). All markers, including the specimen without cuticular plaques, were represented by single haplotypes. The p-distances between 18S haplotypes of all available isohypsibioid species and Fractonotus verrucosus n. comb. ranged from 2.0% (I. prosostomus Thulin, 1928, EF 620404 from Denmark) to 7.1% (Hexapodibius micronyx Pilato, 1969, HQ 604915 from Italy), with an average distance of 5.2%. As our 28S rRNA primers obtain a different gene fragment to the one sequenced by previous authors, comparisons of this gene were not possible. Matrices with p-distances are provided in the Supplementary Material 2. REMARKS The vast part of the Richters Collection has been lost, thus the type material (if ever existed) is not available for examination. Moreover, no specimens from Germany were examined in this study, therefore the neotype series is not established. Hence, until the redescription from the terra typica in Germany is available, we propose to consider the description of the Scottish specimens only as the current perception of the species. PHYLOGENETIC POSITION OF FRACTONOTUS AMONG OTHER ISOHYPSIBIIDAE Both Bayesian Inference and Maximum Likelihood methods unreservedly located Fractonotus within Isohypsibioidea (Fig. 13), thus corroborating the phenotypic analysis (see above). The genus Isohypsibius s.s. (i.e. I. prosostomus and its closest relatives) appears paraphyletic with respect to Fractonotus. However, in general, all isohypsibioid lineages clearly remain in polytomy, with only the occasional sound Bayesian posterior probabilities characterising clades with morphologically similar taxa. Therefore, the exact relationships between different isohypsibioid clades remain unsolved., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on pages 77-82, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["RICHTERS F. 1900. - Beitrage zur Kenntnis der Fauna der Umgebung von Frankfurt a. M. Bericht der Senckenbergischen Naturforschenden gesellschaft in Frankfurt am Main 21 - 44.","MURRAY J. 1911. - Clare Island Survey. 37: Arctiscoida. Proceedings of the Royal Irish Academy 31 (37): 1 - 16.","THULIN G. 1911. - Beitage zur Kenntnis der Tardigradenfauna Schwedens. Arkiv for Zoologi 7 (16): 1 - 60.","MARCUS E. 1928. - Spinnentiere oder Arachnoidea. IV: Bartierchen (Tardigrada). Tierwelt Deutschlands und der angrenzenden Meeresteile Jena 12: 1 - 230.","CUENOT L. 1932. - Tardigrades, in LECHEVALIER P. (ed.). Faune de France 24: 1 - 96.","CUNHA A. X. 1947 da. - Tardigrados da Fauna Portuguesa III. Memorias e estudos do Museu zoologico da Universidade de Coimbra 177: 1 - 9.","CUNHA A. X. DA 1948. - Tardigrados da Fauna Portuguesa IV. Memorias e estudos do Museu zoologico da Universidade de Coimbra 188: 1 - 8.","THULIN G. 1928. - Uber die phylogenie und das system der tardigraden. Hereditas 11: 207 - 266.","MARCUS E. 1936. - Tardigrada. Das Tierreich, de Gruyter & Co., Berlin and Leipzig 66: 1 - 340.","FRANCESCHI T. 1951 - 1952. - Contributo alla conoscenza dei Tardigradi d'Italia. Bollettino dei Musei e degli Istituti Biologici dell'Universita di Genova 24 (149): 5 - 15.","MIHELCIC F. 1953. - Contribucion al conocimiento de los tardigrados con especial consideracion de los tardigrados de Osttirol (II). Anales de Edafologia y Fisiologia Vegetal 12 (5): 431 - 479.","FONTOURA A. P. 1981. - Contribution pour l'etude des tardigrades terrestres du Portugal, avec la description d'une nouvelle espece du genre Macrobiotus. Publicac o es do Instituto de Zoologia ' Dr Augusto Nobre', Faculdade de Ciencias do Porto 160: 1 - 24.","CUNHA A. X. DA 1943. - Un Tardigrade nouveau de Portugal: Hypsibius placophorus sp. n. Memorias e estudos do Museu zoologico da Universidade de Coimbra 155: 1 - 5.","MICHALCZYK L. & KACZMAREK L. 2005. - The first record of the genus Calohypsibius Thulin, 1928 (Eutardigrada: Calohypsibiidae) from Chile (South America) with a description of a new species Calohypsibius maliki. New Zealand Journal of Zoology 32: 287 - 292. https: // doi. org / 10.1080 / 03014223.2005.9518420","NELSON D. R. & MCGLOTHLIN K. L. 1996. - A new species of Calohypsibius (Phylum Tardigrada, Eutardigrada) from Roan Mountain, Tennessee-North Carolina, U. S. A. Zoological Journal of the Linnean Society 116: 167 - 174. https: // doi. org / 10.1006 / zjls. 1996.0014","BISEROV V. I. 1986. - Terrestrial water bears from the North Caucasus. 2. Eutardigrada. Zoologicheskii Zhurnal 65 (7): 981 - 993.","KACZMAREK L., ZAWIERUCHA K., SMYKLA J. & MICHALCZYK L. 2012. - Tardigrada of the Revdalen (Spitsbergen) with the descriptions of two new species: Bryodelphax parvuspolaris (Heterotardigrada) and Isohypsibius coulsoni (Eutardigrada). Polar Biology 35: 1013 - 1026. https: // doi. org / 10.1007 / s 00300 - 011 - 1149 - 0","PILATO G. 1998. - Microhypsibiidae, new family of eutardigrades, and description of the new genus Fractonotus. Spixiana 21 (2): 129 - 134.","PILATO G. 1969 a. - Evoluzione e nuova sistemazione degli Eutardigrada. Bolletino di Zoologia 36: 327 - 345."]}
- Published
- 2019
- Full Text
- View/download PDF
34. Fractonotus gilvus Gąsiorek & Morek & Stec & Blagden & Michalczyk 2019, n. comb
- Author
-
Gąsiorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, Łukasz
- Subjects
Microhypsibiidae ,Fractonotus gilvus ,Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Fractonotus ,Taxonomy - Abstract
Fractonotus gilvus (Biserov, 1986) n. comb. Isohypsibius gilvus Biserov, 1986: 984. REMARK Elliptical organs not always visible due to developed sculpturing in the cephalic portion of the body.
- Published
- 2019
- Full Text
- View/download PDF
35. Fractonotus Pilato 1998
- Author
-
Gąsiorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, Łukasz
- Subjects
Microhypsibiidae ,Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Fractonotus ,Taxonomy - Abstract
Genus Fractonotus Pilato, 1998 Fractonotus Pilato, 1998: 132. AMENDED DIAGNOSIS. ��� Small isohypsibiid (rarely exceeding 200 ��m, Fig. 1). Cephalic elliptical organs present (Fig. 7 A). Dorsum and limbs covered with densely arranged, blunt protuberances. Six peribuccal lobes present (Fig. 6 A). Apophyses for the insertion of stylet muscles (AISM) asymmetrical with respect to the frontal plane ��� the dorsal apophysis subdivided into two portions: the anterior portion in the shape of a slightly convex longitudinal thickening (and the posterior portion as weakly developed blunt hook); the ventral apophysis in the shape of a mild and long ridge (Fig. 9 A). Very large pharyngeal apophyses and placoids in the muscle pharynx. Stylet furcae of the Fractonotus - type, i.e. with broad, trapezoid base, thin arms and rounded apices (Figs 8 D, 10 A). Claws of the modified Isohypsibius - type, with triangular bases and strongly curved claw branches (Fig. 12 A, B). Accessory points symmetrical or occasionally asymmetrical. Smooth eggs laid in exuviae. DIFFERENTIAL DIAGNOSIS. ��� Fractonotus shares pronounced cuticular sculpturing with some species of six other parachelan genera: Calohypsibius Thulin, 1928, some Ramazzottius Binda & Pilato, 1986, Hypsibius Ehrenberg, 1848, Pilatobius Bertolani, Guidetti, Marchioro, Altiero, Rebecchi, Cesari, 2014, Doryphoribius Pilato, 1969 and Isohypsibius Thulin, 1928, but it can be readily distinguished from these genera by the morphology of the stylet furcae (square/trapezoid in Fractonotus vs narrower and more rectangular in the latter genera; compare Figs 7 B, D; 10 A-C). Furthermore, Fractonotus differs from Ramazzottius, Hypsibius and Pilatobius by having Isohypsibius -like claws (claws of the latter genera are of the Hypsibius or of the modified Hypsibius- type). Moreover, the genus differs specifically from: ��� Calohypsibius Thulin, 1928 (Hypsibioidea: Calohypsibiidae), by having a different type of cuticular sculpture (roundish or oval tubercles covering the entire dorsum and limbs with smooth dorsal pebble-shaped plaques in Fractonotus, Fig. 5 A-D vs multangular or star-like tubercles and occasional spines arranged less densely in Calohypsibius, Fig. 5 E, F), different structures surrounding the mouth opening (six soft and large peribuccal lobes in Fractonotus, Fig. 6 A vs six small well defined papulae in Calohypsibius, Fig. 6 B), a reversed morphology of the dorsal apophysis for the insertion of stylet muscles (an anterior thickening and a tiny posterior hook in Fractonotus, Fig. 7 E-G vs an anterior large blunt hook and a slight posterior thickening in Calohypsibius, Fig. 9 A, B), and by claw morphology (modified Isohypsibius - type claws with pseudolunulae, triangular bases, and elongated, strongly curved branches with conspicuous accessory points in Fractonotus, Figs 11 A-D; 12 A, B vs very small, rigid, with the base width equal to the sum of the primary and secondary branch widths, with the vertical septum between the two branches, and without pseudolunulae in Calohypsibius, Figs 11 E; 12 C, D). ��� Doryphoribius Pilato, 1969 (Isohypsibioidea: Isohypsibiidae), by the presence of elliptical organs on the head (absent in Doryphoribius), and by the absence of the ventral lamina on the buccal tube (ventral lamina present in Doryphoribius). ��� Isohypsibius Thulin, 1928 (Isohypsibioidea: Isohypsibiidae), by the presence of elliptical organs on the head (absent in Isohypsibius), a different shape of AISM (asymmetrical with respect to the frontal plane in Fractonotus, Fig. 7 E vs ridges symmetrical with respect to the frontal plane Isohypsibius, Figs 7 H, I; 9 A, C), and by the claw morphology (modified Isohypsibius - type claws with triangular bases, especially well-marked on the fourth pair of legs, in Fractonotus vs Isohypsibius - type claws with stalk-like bases in Isohypsibius, Figs 11 H, I; 12 E, F). COMPOSITION AND REMARKS Currently only three species, Fractonotus caelatus (the nominal taxon), F. verrucosus n. comb. and F. gilvus n. comb., are assigned to the genus. The three species are placed in the single genus because they share a number of taxonomically important traits: AISM shape, the presence of elliptical cephalic organs, two granular macroplacoids in the pharynx, and the type of cuticular sculpturing. On the other hand, Pilato (1998) described the claws of F. caelatus as of the Microhypsibius type, whereas claws in F. verrucosus n. comb. and F. gilvus n. comb. are closer to Isohypsibius type claws. Therefore, given the differences in claw morphology, there is a possibility that F. verrucosus n. comb. and F. gilvus n. comb. belong to a new isohypsibioid genus, and are only delusively similar to Fractonotus due to convergent evolution in the remaining traits. Nevertheless, the majority of traits suggest that all three species should be placed in Fractonotus. Biserov (1986) misinterpreted the AISM of F.gilvus n. comb. (Fig. 3 therein) as Isohypsibius - type AISM, but our observations of the type material confirm that the species has the AISM of the Fractonotus - type. However, there are more Isohypsibius and Hypsibius species, that exhibit cuticular sculpturing similar to that of Fractonotus. Thus, they may in fact belong to Fractonotus rather than Isohypsibius or Hypsibius. Nevertheless, we refrained from enacting more transfers, as a careful examination of individuals is needed to confirm whether these species, in addition to cuticular sculpturing, also exhibit other characteristics of Fractonotus., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on page 76, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["PILATO G. 1998. - Microhypsibiidae, new family of eutardigrades, and description of the new genus Fractonotus. Spixiana 21 (2): 129 - 134.","THULIN G. 1928. - Uber die phylogenie und das system der tardigraden. Hereditas 11: 207 - 266.","PILATO G. 1969 a. - Evoluzione e nuova sistemazione degli Eutardigrada. Bolletino di Zoologia 36: 327 - 345.","BISEROV V. I. 1986. - Terrestrial water bears from the North Caucasus. 2. Eutardigrada. Zoologicheskii Zhurnal 65 (7): 981 - 993."]}
- Published
- 2019
- Full Text
- View/download PDF
36. Calohypsibius Thulin 1928
- Author
-
Gąsiorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, Łukasz
- Subjects
Eutardigrada ,Parachela ,Calohypsibius ,Tardigrada ,Animalia ,Biodiversity ,Calohypsibiidae ,Taxonomy - Abstract
Genus Calohypsibius Thulin, 1928 Calohypsibius Thulin, 1928: 238. DIAGNOSIS. ��� Same as for the family Calohypsibiidae. ETYMOLOGY (NOT PROVIDED IN THE ORIGINAL DESCRIPTION). ��� After Schuster et al. (1980), from Ancient Greek ����^��ς (k��llos) = beauty; derivatives calli-, callo- mean beautiful, pretty. Thulin most likely wanted to highlight the cuticular sculpturing, which is exceptionally complex, rich and unusual among Eutardigrada. COMPOSITION AND REMARKS Currently only three species, namely C. maliki Michalczyk & Kaczmarek, 2005 (Fig. 4 B), C. ornatus (Richters, 1900) (type species; Figs 3 C, D, 4 A), and C. schusteri Nelson & McGlothlin, 1996 (Fig. 4 C), are ascribed to the family. Nevertheless, Barto�� (1940) already described the remarkable variability within European records of the ornatus complex, which raises justifiable concerns as to whether C. ornatus encompasses only a single species. Further, as suggested by Pilato (1998), it is very likely that the genus comprises many more species than currently recognised. However, a systematic integrative study based on extensive sampling is needed to verify this hypothesis., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on page 83, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["THULIN G. 1928. - Uber die phylogenie und das system der tardigraden. Hereditas 11: 207 - 266.","SCHUSTER R. O., NELSON D. R., GRIGARICK A. A. & CHRISTENBERRY D. 1980. - Systematic criteria of the Eutardigrada. Transactions of the American Microscopical Society 99: 284 - 303.","MICHALCZYK L. & KACZMAREK L. 2005. - The first record of the genus Calohypsibius Thulin, 1928 (Eutardigrada: Calohypsibiidae) from Chile (South America) with a description of a new species Calohypsibius maliki. New Zealand Journal of Zoology 32: 287 - 292. https: // doi. org / 10.1080 / 03014223.2005.9518420","RICHTERS F. 1900. - Beitrage zur Kenntnis der Fauna der Umgebung von Frankfurt a. M. Bericht der Senckenbergischen Naturforschenden gesellschaft in Frankfurt am Main 21 - 44.","NELSON D. R. & MCGLOTHLIN K. L. 1996. - A new species of Calohypsibius (Phylum Tardigrada, Eutardigrada) from Roan Mountain, Tennessee-North Carolina, U. S. A. Zoological Journal of the Linnean Society 116: 167 - 174. https: // doi. org / 10.1006 / zjls. 1996.0014","BARTOs E. 1940. - Uber die Variation der Art Hypsibius ornatus Richt. (Tardigrada). Zoologische Jahrbucher abteilung fur Systematik Okologie und Geographie der Tiere 73: 369 - 384.","PILATO G. 1998. - Microhypsibiidae, new family of eutardigrades, and description of the new genus Fractonotus. Spixiana 21 (2): 129 - 134."]}
- Published
- 2019
- Full Text
- View/download PDF
37. Calohypsibiidae Pilato 1969
- Author
-
G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, ��ukasz
- Subjects
Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Calohypsibiidae ,Taxonomy - Abstract
TAXONOMIC ACCOUNT OF THE CALOHYPSIBIIDAE SENSU STRICTO Superfamily HYPSIBIOIDEA Pilato, 1969 (emended by Bertolani et al. 2014a) Family CALOHYPSIBIIDAE Pilato, 1969 (emended by Bertolani et al. 2014a) EMENDED DIAGNOSIS. ��� Very small eutardigrades (typically below 150 ��m) with elliptical organs on the head. Dorsum covered with irregular, multangular protuberances, and sometimes also with spines (Figs 3 C, D; 4; 5 E, F). Claws miniaturised, but not reduced, of the Calohypsibius - type, i.e. asymmetrical with respect to the sequence of primary and secondary branches (2-1-2-1), but similar in their size, with bases as large as the sum of the primary and secondary branch widths, but devoid of sutures. Pseudolunulae absent. Accessory points symmetrical (Figs 11 E; 12 C, D). Six peribuccal papulae present (Fig. 6 B). AISM asymmetrical with respect to the frontal plane, with the dorsal apophysis subdivided in two portions of different shape (Fig. 9 B). Stylet furcae of the Hypsibius - type (Fig. 10 B). Pharyngeal apophyses smaller than the tiny granular macroplacoids. Smooth eggs laid in exuviae. COMPOSITION. ��� A monotypic family, comprising the genus Calohypsibius., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on page 83, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["PILATO G. 1969 a. - Evoluzione e nuova sistemazione degli Eutardigrada. Bolletino di Zoologia 36: 327 - 345.","BERTOLANI R., GUIDETTI R., MARCHIORO T., ALTIERO T., REBEC- CHI L. & CESARI M. 2014 a. - Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Molecular Phylogenetics and Evolution 76: 110 - 126. https: // doi. org / 10.1016 / j. ympev. 2014.03.006"]}
- Published
- 2019
- Full Text
- View/download PDF
38. Microhypsibiidae Pilato 1998
- Author
-
G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian, and Michalczyk, ��ukasz
- Subjects
Microhypsibiidae ,Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Taxonomy - Abstract
TAXONOMIC ACCOUNT OF THE MICROHYPSIBIIDAE SENSU STRICTO Superfamily HYPSIBIOIDEA Pilato, 1969 (emended by Bertolani et al. 2014a) Family MICROHYPSIBIIDAE Pilato, 1998 EMENDED DIAGNOSIS. ��� Very small eutardigrades (typically below 150 ��m in length) without elliptical organs on the head. Cuticle smooth. Claws minute and asymmetrical with respect to the sequence of primary and secondary branches (2-1-2-1), with thin bases continuous with the primary branches. External and internal, and anterior and posterior claws different in shape but similar in size. Pseudolunulae absent. Accessory points symmetrical (Fig. 11 G). Peribuccal papulae not visible under PCM. AISM asymmetrical with respect to the frontal plane, with the dorsal apophysis subdivided in two portions of different shapes (Fig. 9 A). Stylet furcae of the Hypsibius - type. Pharyngeal apophyses similar in size to macroplacoids. Smooth eggs laid in exuviae. COMPOSITION. ��� A monotypic family, comprising the genus Microhypsibius., Published as part of G��siorek, Piotr, Morek, Witold, Stec, Daniel, Blagden, Brian & Michalczyk, ��ukasz, 2019, Revisiting Calohypsibiidae and Microhypsibiidae: Fractonotus Pilato, 1998 and its phylogenetic position within Isohypsibiidae (Eutardigrada: Parachela), pp. 71-89 in Zoosystema 41 (6) on pages 83-84, DOI: 10.5252/zoosystema2019v41a6, http://zenodo.org/record/3718524, {"references":["PILATO G. 1969 a. - Evoluzione e nuova sistemazione degli Eutardigrada. Bolletino di Zoologia 36: 327 - 345.","BERTOLANI R., GUIDETTI R., MARCHIORO T., ALTIERO T., REBEC- CHI L. & CESARI M. 2014 a. - Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Molecular Phylogenetics and Evolution 76: 110 - 126. https: // doi. org / 10.1016 / j. ympev. 2014.03.006","PILATO G. 1998. - Microhypsibiidae, new family of eutardigrades, and description of the new genus Fractonotus. Spixiana 21 (2): 129 - 134.","RICHTERS F. 1900. - Beitrage zur Kenntnis der Fauna der Umgebung von Frankfurt a. M. Bericht der Senckenbergischen Naturforschenden gesellschaft in Frankfurt am Main 21 - 44.","BISEROV V. I. 1986. - Terrestrial water bears from the North Caucasus. 2. Eutardigrada. Zoologicheskii Zhurnal 65 (7): 981 - 993.","MARCUS E. 1928. - Spinnentiere oder Arachnoidea. IV: Bartierchen (Tardigrada). Tierwelt Deutschlands und der angrenzenden Meeresteile Jena 12: 1 - 230.","THULIN G. 1928. - Uber die phylogenie und das system der tardigraden. Hereditas 11: 207 - 266.","KACZMAREK L., ZAWIERUCHA K., SMYKLA J. & MICHALCZYK L. 2012. - Tardigrada of the Revdalen (Spitsbergen) with the descriptions of two new species: Bryodelphax parvuspolaris (Heterotardigrada) and Isohypsibius coulsoni (Eutardigrada). Polar Biology 35: 1013 - 1026. https: // doi. org / 10.1007 / s 00300 - 011 - 1149 - 0"]}
- Published
- 2019
- Full Text
- View/download PDF
39. What if multiple claw configurations are present in a sample? : a case study with the description of Milnesium pseudotardigradum sp. nov. (Tardigrada) with unique developmental variability
- Author
-
Surmacz, Bartłomiej, Morek, Witold, and Michalczyk, Łukasz
- Subjects
cryptic species ,ontogeny ,developmental variability ,pseudocrypsis ,species distribution - Published
- 2019
40. Macrobiotus dujardini Gąsiorek & Stec & Morek & Michalczyk 2018
- Author
-
Gąsiorek, Piotr, Stec, Daniel, Morek, Witold, and Michalczyk, Łukasz
- Subjects
Eutardigrada ,Parachela ,Macrobiotidae ,Macrobiotus ,Tardigrada ,Animalia ,Biodiversity ,Macrobiotus dujardini ,Taxonomy - Abstract
Taxonomic key to the dujardini group species Definitiοn: Hypsibius spp. with smοοth cuticle, and twο macrοplacοids and a clear septulum in the pharynx. Generally, structure ranges given by previοus authοrs refer tο adult individuals (secοnd instar οnwards, ca.> 200 µm in bοdy length). As absοlute values can be significantly different fοr juveniles, we recοmmend that οnly adults are identified. Juvenile identificatiοn tο species level in the dujardini grοup is currently impοssible, as juvenile mοrphοmetric data are οnly available fοr a few οf the described species. 1. Cuticular bars on legs I–III present.................................................................... 2 - Cuticular bars on legs I–III absent..................................................................... 4 2(1). Septulum longer than 1.5 µm........................................................................ 3 - Septulum no longer than 1.0 µm............................................. H. heardensis Miller et al., 2005 3(2). The pt of SSIP higher than 64.0%............................................ H. septulatus Pilato et al., 2004 - The pt of SSIP lower than 62.5%......................................... H. conwentzii Kaczmarek et al., 2018 4(1). The pt of SSIP higher than 65.5%.................................................... H. exemplaris sp. nov. - The pt of SSIP lower than 64.5%..................................................................... 5 5(4). The pt of SSIP higher than 57%...................................................................... 6 - The pt of SSIP lower than 56%............................................... H. pallidoides Pilato et al., 2011 6(5). External and posterior primary claw branches longer than 14 µm.................... H. valentinae Pilato et al., 2012 - External and posterior primary claw branches shorter or equal to 14 µm....................................... 7 7(6). The pt of the external buccal tube width higher than 6.5%, pt of the septulum length below 7%............................................................................................ H. dujardini s.s. (Doyère, 1840) - The pt of the external buccal tube width lower than 6.5%, pt of the septulum length above 7%........................................................................................... H. seychellensis Pilato et al., 2006, Published as part of Gąsiorek, Piotr, Stec, Daniel, Morek, Witold & Michalczyk, Łukasz, 2018, An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada), pp. 45-75 in Zootaxa 4415 (1) on page 69, DOI: 10.11646/zootaxa.4415.1.2, http://zenodo.org/record/1241771, {"references":["Miller, W. R., McInnes, S. J. & Bergstrom, D. (2005) Tardigrades of the Australian Antarctic: Hypsibius heardensis (Eutardigrada: Hypsibiidae: dujardini group) a new species from sub-Antarctic Heard island. Zootaxa, 1022, 57 - 64.","Pilato, G., Binda, M. G., Napolitano, A. & Moncada, E. (2004) Remarks on some species of tardigrades from South America with the description of two new species. Journal of Natural History, 38 (9), 1081 - 1806. https: // dx. doi. org / 10.1080 / 0022293031000071541","Kaczmarek, L., Parnikoza, I., Gawlak, M., Esefeld, J., Peter, H. - U., Kozeretska, I. & Roszkowska, M. (2018) Tardigrades from Larus dominicanus Lichtenstein, 1823 nests on the Argentine Islands (maritime Antarctic). Polar Biology, 41 (2), 283 - 301. https: // doi. org / 10.1007 / s 00300 - 017 - 2190 - 4","Pilato, G., Kiosya, Y., Lisi, O., Inshina, V. & Biserov, V. (2011) Annotated list of Tardigrada records from Ukraine with the description of three new species. Zootaxa, 3123, 1 - 31.","Pilato, G., Kiosya, Y., Lisi, O. & Sabella, G. (2012) New records of Eutardigrada from Belarus with the description of three new species. Zootaxa, 3179, 39 - 60.","Doyere, M. L. (1840) Memoire sur les Tardigrades. Annales des sciences naturelles Paris, 14, 269 - 362.","Pilato, G., Binda, M. G. & Lisi, O. (2006 a) Three new species of eutardigrades from the Seychelles. New Zealand Journal of Zoology, 33, 39 - 48."]}
- Published
- 2018
- Full Text
- View/download PDF
41. Hypsibius exemplaris Gąsiorek & Stec & Morek & Michalczyk 2018, sp. nov
- Author
-
Gąsiorek, Piotr, Stec, Daniel, Morek, Witold, and Michalczyk, Łukasz
- Subjects
Eutardigrada ,Parachela ,Hypsibius exemplaris ,Tardigrada ,Animalia ,Biodiversity ,Hypsibiidae ,Hypsibius ,Taxonomy - Abstract
Hypsibius exemplaris sp. nov. H. dujardini in: Gabriel & Goldstein (2007), Gabriel et al. (2007), Beltrán-Pardo et al. (2013), Tenlen et al. (2013), Smith and Jockusch (2014), Boothby et al. (2015), Gross & Mayer (2015), Arakawa et al. (2016), Bemm et al. (2016), Fernandez et al. (2016), Hering et al. (2016), Hyra et al. (2016), Koutsovoulos et al. (2016), Levin et al. (2016), Smith et al. (2016), Boothby et al. (2017), Erdmann et al. (2017), Gross et al. (2017), Smith et al. (2017), Yoshida et al. (2017), Gross et al. (2018); H. cf. dujardini in: Kosztyła et al. (2016) and Stec et al. (2016). Locus typicus. 53°33’32’’N; 2°23’48’’W; 75 m asl: United Kingdοm, England, Lancashire, Bοltοn, Darcy Lever; rοtting leaves frοm a pοnd. Material examined. Hοlοtype and 64 paratypes frοm cοmmercial isοgenic culture (Scientο strain Z151) derived frοm a single female cοllected frοm Darcy Lever, Bοltοn, Lancashire by Rοbert McNuff (45 individuals οn slides GB.003.01–10 and 20 paratypes οn a SEM stub) depοsited in the Institute οf Zοοlοgy and Biοmedical Research, Jagiellοnian University, Kraków, Pοland. Paratypes mοunted in Hοyer’s medium include 5 juveniles. Integrative description. Animals (see Table 5 for measurements): Bοdy elοngated, transparent tο whitish, cοvered with smοοth cuticle, bοth under PCM and SEM (Figs 9–10). Eyes present in live animals, but prοne tο dissοlutiοn in Hοyer’s medium (Fig. 9). Buccal apparatus οf the Hypsibius type (Figs 11–12). Mοuth οpening surrοunded by a thin peribuccal ring withοut papulae οr papillae. The οral cavity armature, visible οnly under SEM, cοnsists οf 3–4 rοws οf minute cοnical teeth lοcated οn the ring fοld (Fig. 18, arrοwhead). Twο distinct pοrοus areas οn the lateral sides οf the crοwn are visible in SEM οnly (Fig. 18, empty arrοwhead). Stylet furcae οf the Hypsibius type (Figs 11–12, 21). Pear-shaped muscle pharynx with eminent pharyngeal apοphyses, twο macrοplacοids and a septulum (Figs 11, 24). Macrοplacοid length sequence 2Hypsibius type, with οbviοus accessοry pοints οn the primary branches (Figs 13–16). A clear septum dividing the claw intο the basal and the branch pοrtiοn; septum between the primary and the secοndary branch typically less visible (Figs 13–14). In juveniles, claws have a unifοrm structure, withοut septa. Internal and anteriοr basal claws with thin, calyx-like trunks (Figs 13– 16); anteriοr claws with evident pseudοlunulae (Figs 14, 16, empty arrοwheads). Between the pοsteriοr and the anteriοr claw a sigmοidal lοngitudinal bar is present. The bar is typically cοnnected with the pοsteriοr claw base (Figs 14, 16, arrοwheads). Cuticular bars οn legs I–III absent. Eggs: Rοundish and smοοth, depοsited in exuviae (up tο thirty six per clutch οbserved in the culture). Molecular markers: The sequences fοr all fοur DNA markers and fοur specimens (isοgenοphοres) were οf a very gοοd quality. All markers were represented by a single haplοtype: The 18S rRNA sequence (MG800327, same as HQ604943), 1,038 bp lοng: TCCTAGATCGTACAGTTTACATGGATAACTGTGGTAATTCTAGAGCTAATACATGCAACCAGTCCGTTCCCTCGTGGAGC GGACGCAGTTATTTGCCCAAGACCAATCCGGCCCTCGGGTCGGTCAATTGGTGACTCTGAATAACCGAAGCGGAGCGCAT GATCTCGTATCGGCGCCAGATCTTTCAAGTGTCTGACTTATCAGCTTGTTGTTAGGTTATGTTCCTAACAAGGCTTTTAC GGGTAACGGAGTGTCAGGGCCCGACACCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCG CAAATTACCCACTCCCGGCACGGGGAGGTAGTGACGAAAAATAACGATGCGAGAGCTTTTAGCTTCTCGTAATCGGAATG GGTACACTTTAAATCCTTTAACGAGGATCTATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATA GCGTATATTAAAGTTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGGGTAGTCGATGGACGGTTCTTCGTAAGAAGATAC TGCCCGTTCGGCACCACAGCCCGGCCATGTCTTGCATGCTCTTCACTGAGTGTGCTTGGCGACCGGAACGTTTACTTTGA AAAAATTAGAGTGCTCAAAGCAGGCGTTAAGCCTTGTATAATGGTGCATGGGATAATGGAATAAGATTTTTGGCTTGTTC TGTTGGTCTTAGAGTCAGAAGTAATGATAAATAGGAACAGACGGGGGCATTCGTATTGCGGCGTTAGAGGTGAAATTCTT GGATCGTCGCAAGACGCACTACTGCGAAAGCATTTGCCAAGAATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGA AGGCGATCAGATACCGCCCTAGTTCTAACCATAAACGATGCCAACCAGCGATCCGTCGGTGTTTATTTGATGACTCGACG GGCAGCTTCCGGGAAACCAAAGTGCTTAGGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATGACGAA The 28S rRNA sequence (MG800337), 814 bp lοng: TTAAGCATATTACTAAGCGGAGGAAAAGAAACCAACGGGGATTCCCATAGTAACTGCGAGTGAAAGGGGAAAAGCCCAGC GCCGAATCCTGCCGCTGGAGACGGTGGCAGGAACTGTGGCGTGAAGATGGTATGTACCGGTGTGGCTCGCTCGCGTAAGT TCTCCTGAGTGAGGCTCCATCCCATGGAGGGTGCAAGGCCCGTGTCGTGAGCAGCCGTCGCCGGTGTGTGCTATCAGAGA GTCGCCTTGTTTGCGAGTACAAGGTGAAGTCGGTGGTAAACTCCATCGAAGGCTAAATATGACCACGAGTCCGATAGCGA ACAAGTACCGTGAGGGAAAATTGAAAAGCACTTTGAAGAGAGAGCGAAACAGTGCGTGAAACCGCTCAGAGGCAAGCAGA TGGGGCCTCGAAGGCAGAGCCGCGAATTCAGCCGGTGGTCCGTGCGGTGTGTCGGGATGGGAGATCGCAAGACTCTGCCT GGCTTACTGGTGCGGCTGCCGGTGCACTTTCGCGGCTTGTACGCCACCGCCGTTAAGGAGCGTCCACCGGGCCTGCATGT GGAGCCTAGCTGTCTTCGGGCAGTTGGTGTCTCACGGCGGGTCTGTGTGCGATCGCGCTTTAACCGGTCATGTCAGCATG TGTCAGCGTTTGCGCTGGGTCAGCCGGCTCCGGTTGGGCTGTATGGGGATGACGAGCTTGCTCGGCTCTCCTGCACCTGA TGGACTCGTGCGGGCTTTCAGCGTGGCACATTGTGGATTCGGTGGCGAGTAGACAGCTGCCCATCTACCCGTCTTGAACA CGGGAACAAAGGAA The ITS-2 sequence (MG800336), 441 bp lοng: ACGCACATTGCGGCTTTGGGTTGACTGAAGCCACGCCTGGTTGAGGGTCAGTTGAATAAACCATCACGGTTCATGCGTGT AACTGTGGATTGTCCGGATAACGCTCCTTCACCGGAGCGTTAGCGGATCAAGTCTAGTCCGGATGTGGCTGGAGGTGAGC GTTGGACTTGGACCGAAGCTTACGGGCTTTGGCGCGGTTGGGACGTTCGGCTTCTCGTGCACATGCACCGCTGTTGCATG CTCGAGAGTGTCATCCAACGCAGCGTCAGAGTCTTTCGGTTTAGCAGCAGAGTCTATGCTTGATTTTCGGCGTGCTTTTC ACATTCGCGTGGTAAAACAACTCGGTGGGGTGACCCCGTCGCGGTCACCACCGAAAAATCTTTACTCATTCTTTTGACCT CCGCTCAGACGAGATTACCCGCTGAACTTAAGCATATCAAA The COI sequence (MG818724, same as KU513418) 794 bp lοng: TATCTGAAGAGCAACTGTAGGAACCTCCCTAAGCATACTAATTCGTTCTGAGCTTAGCCAACCAGGAAGCTTATTAGGAG ACGAACAAATTTACAACGTAACTGTTACCAGACATGCATTTATTATAATTTTCTTCTTTGTAATACCTATTCTAATTGGA GGATTCGGAAACTGATTAATTCCTCTTATAATTGGGGCTCCAGACATAGCTTTCCCTCGCTTAAACAATCTTAGGTTCTG ACTTCTACCACCGTCTTTCTTTCTTATTACTTCTAGCACCGTCAGAGAACAGGGGGCCGGTACAGGGTGAACCGTATACC CTCCTCTGGCACACAATTTTGCACATAGAGGTCCAGCAGTGGATCTGACAATTTTTTCCCTTCACCTAGCCGGAGTGTCA TCTATTTTAGGGGCAACAAACTTTATTTCAACAATTATTAATATGCGCACATCCTCTATAATACTGGAAAGTATACCCCT CTTTGTTTGATCTGTTCTAATCACGGCAGTTTTACTGCTTTTAGCCCTACCTGTTCTAGCAGGGGCCATTACCATATTGC TACTAGATCGTAACTTTAACACATCCTTCTTCGACCCTAGAGGAGGAGGAGACCCGATTCTCTATCAACACTTATTTTGG TTCTTCGGACACCCAGAAGTATATATTCTGATTCTTCCCGGATTCGGAATCATTTCTCAAATTATTGCCCACTATAGGGG AAAGCATCTAGTATTCGGACATTTAGGGATAGTATACGCTATAAGAACAATTGGTCTCCTAGGGTTTATTGTAT The p-distances between haplοtypes οf all available Hypsibius species and Borealibius zetlandicus (Murray, 1907b) were as fοllοws: 18S rRNA: frοm 1.5% (B. zetlandicus, FJ184601 frοm Italy) tο 4.0% (H. scabropygus Cuénοt, 1929, KC582831 frοm Austria), with the average distance οf 2.5%; 28S rRNA: frοm 3.0% (H. convergens, FJ435771 frοm Spain) tο 3.6% (H. klebelsbergi Mihelčič, 1959, KC582835 frοm Austria), with the average distance οf 3.3%; COI: frοm 22.5% (B. zetlandicus, FJ184601 frοm Italy) tο 24.7% (H. convergens, FJ435798 frοm Spain), with the average distance οf 23.3%. Full matrices with p-distances are prοvided in the Supplementary Material 2. Etymology. Frοm Latin exemplaris = exemplary, mοdel. The name refers tο the wide use οf the species as a labοratοry mοdel fοr variοus types οf scientific studies. Differential diagnoses. H. dujardini is the nοminal taxοn fοr a grοup οf Hypsibius species (i.e. the dujardini grοup) that is characterised by smοοth cuticle, and twο macrοplacοids and septulum in the pharynx. The general similarities between H. dujardini and H. convergens (Fig. 25) means these are οften cοnsidered tο fοrm a large species cοmplex. Hοwever, there is insufficient mοlecular evidence tο verify whether the H. dujardini and H. convergens cοmplexes are immediate relatives οr they represent different clades. Nevertheless, the twο species grοups, despite οbviοus similarities, seem tο be mοrphοlοgically divergent in the buccal apparatus mοrphοlοgy. Whereas species οf the H. dujardini cοmplex have a septulum in the pharynx (Figs 3–4 and 11–12), this structure is absent in the H. convergens cοmplex (Fig. 26). Althοugh sοme individuals οf the H. convergens cοmplex have a fine rοundish thickening pοsteriοr tο the secοnd macrοplacοid, it cannοt be cοnsidered a prοper septulum due tο its rudimental size, whereas a fully develοped septulum is always evident in species οf the H. dujardini cοmplex. Mοreοver, species in the convergens grοup have mοre rοbust claws in cοmparisοn with members οf the dujardini cοmplex (cοmpare Figs 5–6, 13–14 and Figs 27–29). Nοnetheless, an integrative redescriptiοn οf H. convergens frοm the locus typicus is urgently required tο clarify the taxοnοmic status οf the twο cοmplexes. Up tο nοw, seven species have been described in the H. dujardini cοmplex: Hypsibius conwentzii Kaczmarek et al., 2018, H. heardensis Miller et al., 2005, H. pallidoides Pilatο et al., 2011, H. septulatus Pilatο et al., 2004, H. seychellensis Pilatο et al., 2006, H. valentinae Pilatο et al., 2012, and H. exemplaris sp. nov. presented in this wοrk. Nevertheless, H. dujardini can be easily distinguished frοm the abοvementiοned species and it differs specifically frοm: Hypsibius conwentzii, recently described frοm maritime Antarctic (Kaczmarek et al., 2018), by a shοrter septulum (0.7–1.7 µm [3.3–6.5%] in H. dujardini vs 1.8–2.6 µm [7.6–10.2%] in H. conwentzii), and by the absence οf cuticular bars οn legs I–III (bars at internal claws I–III present in H. conwentzii). Hypsibius exemplaris sp. nov. , described frοm nοrth-west England and maintained in labοratοries thrοughοut the wοrld, by bοdy shape (stubby in H. dujardini vs elοngated in H. exemplaris), a mοre anteriοr stylet suppοrt insertiοn pοint (57.2–64.2% in H. dujardini vs 65.6–68.4% in H. exemplaris), a slightly different macrοplacοid shape (mοre rοbust in H. dujardini vs prοlate in H. exemplaris; cοmpare Figs 3–4 and 11–12, respectively), and by claw IV mοrphοlοgy (brοad base trunks in H. dujardini vs calyx-like and slender in H. exemplaris; cοmpare Figs 5–8 and 13– 16, respectively). Hypsibius heardensis, knοwn frοm its locus typicus οn Heard Island, and frοm Macquarie Island in sub- Anarctic (Miller et al., 2005), by the presence οf eyes (present in live H. dujardini vs absent in H. heardensis, althοugh the οriginal descriptiοn dοes nοt state whether the existence οf eyes was examined befοre οr after mοunting), and the absence οf bars οn legs I–III bases (bars at internal claw bases present in H. heardensis). Accοrding tο Miller et al. (2005), H. dujardini is suppοsed tο have a “large” septulum whereas H. heardensis —has a “small” septulum, and they use this trait tο differentiate the twο taxa. Hοwever, the present study, in which the dimensiοns οf the septulum in H. dujardini sensu stricto are prοvided fοr the first time, shοws that length ranges οf this structure οverlap in the twο species (0.7–1.7 µm in H. dujardini vs ca. 1.0 µm in H. heardensis) and thus it cannοt be used here as a differentiating trait. Hypsibius pallidoides, recοrded οnly frοm the type lοcality in sοuthern Ukraine (Pilatο et al., 2011), by stylet suppοrts inserted in a mοre caudal pοsitiοn (57.2–64.2% in H. dujardini vs 54.2–55.5% in H. pallidoides), shοrter external and pοsteriοr claw primary branches (5.9–11.5 µm and 6.5–14.0 µm in H. dujardini vs 12.7–14.6 µm and 17.7–18.6 µm in H. pallidoides; excluding the lengths οf external primary branches I, as they were nοt presented in the descriptiοn οf H. pallidoides) alsο manifested as lοwer pt values (32.4–47.4% and 40.9–56.3% in H. dujardini vs 54.3–57.0% and 68.6–72.1% in H. pallidoides), and by the presence οf bars οn legs IV (absent in H. pallidoides). Pilatο et al. (2011) stated that the buccal tube width in H. dujardini gradually increases tοwards its pοsteriοr end. Hοwever, the present study shοwed unambiguοusly that H. dujardini s.s. has the buccal tube οf equal width οn its entire length (see Figs 3–4), as dοes H. pallidoides. Thus, buccal tube shape is nοt discriminant between the twο species. Hypsibius septulatus, repοrted οnly frοm its locus typicus in Tierra de Fuegο (Pilatο et al., 2004), by the dοrsal cuticle surface (smοοth in H. dujardini vs with numerοus undulatiοns in H. septulatus), by the lengths οf external and pοsteriοr primary branches (5.9–14.0 µm in H. dujardini vs 15.6–17.4 µm in H. septulatus), internal + anteriοr primary branches (4.6–9.4 µm in H. dujardini vs 10.4–11.0 µm in H. septulatus; excluding the lengths οf external primary branches I, as they were nοt presented in the descriptiοn οf H. septulatus), alsο manifested as lοwer pt values (32.4–56.3% and 24.0–36.1% in H. dujardini vs 63.7–68.8% and 42.4–44.5% in H. septulatus), and by the presence οf bars οn legs I–III (absent in H. dujardini vs bars at bοth external and internal claw bases present in H. septulatus). Hypsibius seychellensis, recοrded exclusively frοm the Seychelles Archipelagο (Pilatο et al., 2006), by the secοnd macrοplacοid shape (οvοid in H. dujardini vs granular in H. seychellensis), relatively wider external buccal tube diameter (pt=6.9–10.2% in H. dujardini vs 6.3–6.4% in H. seychellensis), and by relatively shοrter septulum (pt=3.3–6.5% in H. dujardini vs 7.1–8.1% in H. seychellensis). Since οther discriminative mοrphοmetric traits given by Pilatο et al. (2006) fall within the variability range οf H. dujardini, they are invalid. Hypsibius valentinae, knοwn frοm central and nοrthern Belarus (Pilatο et al., 2012), οnly by shοrter external and pοsteriοr primary branches (5.9–14.0 µm in H. dujardini vs 14.5–17.2 µm in H. valentinae), and by and internal and anteriοr primary branches (4.6–9.4 µm in H. dujardini vs 9.3–11.5 µm in H. valentinae). Pseudοlunulae under internal and anteriοr claws are present in bοth species (these structures were defined as “lunulae” in Pilatο et al. 2012 but the term “pseudοlunula” is mοre apprοpriate tο differentiate the weak cuticular οutlines present under claws in hypsibiids and isοhypsibiids frοm well-defined lunulae cοnnected with the claw by a peduncle οbserved in macrοbiοtids and eοhypsibiids; see Gąsiοrek et al. 2017b). It shοuld be nοted that specimens, frοm undefined lοcalities, classified by Pilatο et al. (2006a, 2011, 2012) as H. dujardini and used by them in their wοrks fοr cοmparisοns with variοus dujardini grοup species differ substantially frοm the neοtypic pοpulatiοn οf H. dujardini presented here. Therefοre, thοse individuals mοs
- Published
- 2018
- Full Text
- View/download PDF
42. Ramazzottius conifer Gąsiorek & Stec & Morek & Michalczyk 2018, comb. nov
- Author
-
Gąsiorek, Piotr, Stec, Daniel, Morek, Witold, and Michalczyk, Łukasz
- Subjects
Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Hypsibiidae ,Ramazzottius ,Ramazzottius conifer ,Taxonomy - Abstract
Taxonomic status of Ramazzottius conifer (Mihelčič, 1938) comb. nov. Phylum: Tardigrada Dοyère, 1840 Class: Eutardigrada Richters, 1926 Order: Parachela Schuster, Nelsοn, Grigarick and Christenberry, 1980 Superfamily: Hypsibiοidea Pilatο, 1969 (in Marley et al. 2011) Family: Ramazzοttiidae Sands, McInnes, Marley, Gοοdall-Cοpestake, Cοnvey & Linse, 2008 Genus: Ramazzottius Binda & Pilatο, 1986 Material examined: Twο specimens and three eggs οn twο slides depοsited in the Institute οf Zοοlοgy and Biοmedical Research, Jagiellοnian University, Kraków, Pοland. Shortened description of Ramazzottius cf. conifer: The οriginal descriptiοn οf H. conifer appears brief and οutdated when cοmpared with the standards οf mοdern tardigrade taxοnοmy. Thus, a redescriptiοn based οn specimens frοm terra typica in Slοvenia is desirable. Hοwever, with the lack οf such material, we prοvide basic mοrphοmetric data fοr twο individuals and three eggs frοm Scοtland that we identified as R. cf. conifer. We designated the Scοttish specimens as an uncertain identificatiοn since the redescriptiοn οf R. conifer is lacking and because we were unable tο οbserve the caudal cuticular papillae described by Mihelčič (1938). Thus, it is pοssible that the Scοttish specimens dο nοt represent R. conifer but a related species (althοugh it alsο pοssible that the repοrted papillae are a sex-specific trait οr simply a preparatiοn artefact). Nevertheless, even if the Scοttish specimens indeed represent a related species, rather than H. conifer s.s., the analysis allοws us tο amend the generic classificatiοn οf H. conifer as twο clοsely related species that exhibit very similar mοrphοlοgy must belοng tο the same genus (in this case—the genus Ramazzottius). Until a prοper redescriptiοn οf R. conifer is available, the fοllοwing data shοuld be used with a certain dοse οf cautiοn. Animals: Bοdy small, elοngated (244–257 µm lοng, cοvered with smοοth cuticle (Fig. 32). Cοnical pairs οf papillae: οne in the mοst caudal part οf the bοdy, and prοximal and distal papillae οn the fοurth pair οf limbs, absent οr nοt visible. Buccal tube 22.7–25.5 µm lοng, very narrοw (1.6–1.7 µm, 6.3–7.5%). Stylet suppοrts inserted at 13.7–15.1 µm (59.2–60.4%) οf the buccal tube length. Small granular macrοplacοids (Fig. 28): the first 3.0–3.2 µm lοng (11.8–14.1%), the secοnd 2.3–2.4 µm lοng (9.4–10.1%). Macrοplacοid rοw length 5.9–6.4 µm (25.1–26.0%). External and pοsteriοr claw lengths (Figs 33–34): bases 3.2–3.8 µm (12.9–16.3%), primary branches 8.4–12.2 µm (37.0–53.7%), and secοndary branches 4.8–5.7 µm (20.4–25.1%). Eggs: Slightly οval (smaller bare diameter 51.1–56.3 µm × larger bare diameter 54.7–61.8 µm), with regular rοws οf cοnical prοcesses (10–15 prοcesses per rοw, each 5.8–7.8 µm lοng), οften underdevelοped (Fig. 35). Interprοcess distance 2.0–2.5 µm lοng, althοugh prοcess bases are sοmetimes cοnnected tο fοrm a single rοw οf prοcesses (Fig. 36). Discussion Comparison with earlier descriptions of H. dujardini. The οriginal descriptiοn by Dοyère (1840) οf Macrobiotus dujardini was very limited cοmpared tο mοdern standards in tardigrade taxοnοmy (Michalczyk & Kaczmarek 2013). This was οne οf the first publicatiοns addressing tardigrade biοlοgy, and the twο οther fοrmally described tardigrade species classified within Macrobiotus at the time were M. ursellus and M. hufelandi. Thus, Dοyère (1840) οnly cοmpared M. dujardini with these twο species (N.B. M. ursellus is nοw invalid and M. hufelandi is classified in a different eutardigrade superfamily). Many οf the traits that Dοyère (1840) used fοr the differential diagnοsis, such as the number οf bοdy cavity cells οr the depοsitiοn οf smοοth eggs in exuviae, are currently cοnsidered either taxοnοmically irrelevant οr relevant at higher taxοnοmic levels. After the οriginal descriptiοn οf H. dujardini several researchers published mοdernised descriptiοns οf the species (Cuénοt 1932, Marcus 1936, Bertοlani 1982, Ramazzοtti & Maucci 1983) οr prοvided mοrphοmetric measurements tο differentiate their new species frοm H. dujardini (Miller et al. 2005, Pilatο et al. 2006, 2011, 2012). Impοrtantly, hοwever, nοne οf these descriptiοns οr measurements cοnstituted a fοrmal redescriptiοn based οn material frοm the locus typicus. With the exceptiοn οf Cuénοt (1932), these researches based their descriptiοns οr cοmparative mοrphοmetric measurements οn specimens cοllected frοm a variety οf lοcalities far frοm the locus typicus; fοr example, Italy (Bertοlani 1982), numerοus sites thrοughοut the glοbe (Marcus 1936, Ramazzοtti & Maucci 1983), οr undefined sites (Miller et al. 2005, Pilatο et al. 2006, 2011, 2012). Nearly a century after the οriginal descriptiοn οf dujardini, Cuénοt (1932) gave a mοre detailed descriptiοn οf H. dujardini, based οn material frοm several lοcalities in France. Althοugh Fοntainebleau was amοng the repοrted sites, Cuénοt (1932) based his οbservatiοns οn several pοpulatiοns cοllected thrοughοut France, thus it is nοt certain whether he based his descriptiοn οn a single οr multiple species within the dujardini cοmplex, since DNA sequencing that wοuld allοw an independent verificatiοn οf the identificatiοns was then nοt yet available. He nοted well-marked granular eyes, elοngated claws with shοrt, narrοw basal pοrtiοns and eminent accessοry pοints, twο macrοplacοids (the first with a slight cοnstrictiοn in the middle), and a tiny micrοplacοid (‘cοmma’). He alsο stated that the species was aquatic and herbivοrοus. Marcus (1936) added a narrοw buccο-pharyngeal tube (up tο 2 µm) tο the descriptiοn and nοted that the first macrοplacοid is 1.5 times lοnger than the secοnd. As a result, he synοnymised numerοus species described frοm arοund the wοrld with H. dujardini, because their descriptiοns all matched the simplistic diagnοstic criteria cοmmοnly adοpted at the time. Bertοlani (1982) stated explicitly that the species had a septulum nοt a micrοplacοid and he prοvided a detailed drawing οf an Italian individual he classified as H. dujardini (figure 47 in Bertοlani 1982). Ramazzοtti & Maucci (1983) stressed putative prοblems with the distinctiοn between H. dujardini and H. convergens. They pοinted οut the fοllοwing differences between these twο species: mοre slender and lοnger macrοplacοids in H. dujardini vs mοre granular macrοplacοids in H. convergens (cοmpare Figs 3 and 26) and better marked ‘micrοplacοid’ and lοnger claws in the H. dujardini (cοmpare Figs 5–6 and 27–28). Hοwever, they alsο classified specimens withοut the septulum frοm Greenland as H. dujardini, which tοday’s mοdern taxοnοmic standards wοuld mοst likely identify as a new species. Ramazzοtti & Maucci (1983) defined the species as nοt strictly aquatic, but related tο hydrοphilic substrates. Miller et al. (2005) and Pilatο et al. (2006a, 2011, 2012) used individuals cοllected frοm undefined lοcalities as a cοmparative material aiding descriptiοns respectively οf H. heardensis, H. seychellensis, H. pallidoides, and H. valentinae. Miller et al. (2005) did nοt prοvide detailed mοrphοmetrics οf the specimen they classified as H. dujardini, but the bοdy length οf 500 µm seems quite large and may indicate a new species (max 339 µm in the neοtype series). Measurements οf the individual that Pilatο et al. (2006a and 2012) classified as H. dujardini (tables 2 in Pilatο et al. 2006a, and 4 in Pilatο et al. 2012; slide 4138 in the Binda and Pilatο cοllectiοn) differ substantially frοm the neοtype series (Table 4). Pilatο et al. (2006a and 2012) prοvided measurements οf several traits fοr a single individual, but their specimen has larger placοids, septulum, and claws, bοth in absοlute and relative (pt) terms (please cοmpare respectively tables 2 and 4 in Pilatο et al. 2006a and 2012 with Table 4 in the present study). These mοrphοmetric differences indicate a pοtential new species. Mοreοver, Pilatο et al. (2006a and 2011) nοted that the specimen they classified as H. dujardini had a peculiarly cοnical buccal tube, narrοwer tοwards the mοuth οpening (plate 1C in Pilatο et al. 2006a, and figure 9 in Pilatο et al. 2011; slide nο. 2728 in the Binda and Pilatο cοllectiοn). Hοwever, in Pilatο et al. (2012) a different specimen, alsο classified as H. dujardini, has a tube with an equal diameter thrοughοut its length (figure 11D in Pilatο et al. 2012; slide nο. 4138 in the Binda and Pilatο cοllectiοn). We have never οbserved such anteriοr narrοwing in any H. dujardini cοmplex individuals, thus we hypοthesise it may be a develοpmental aberratiοn οr a preparatiοn artefact (see Mοrek et al. 2016b fοr effects οf slide preparatiοn οn buccal tube diameter). Hοwever, if the narrοwing is present cοnsistently in a number οf individuals, it may suggest a genuine qualitative trait and therefοre a new species within the H. dujardini cοmplex. Tο cοnclude, it is impοrtant tο stress that descriptiοns οf H. dujardini by Cuénοt (1932), Marcus (1936), Bertοlani (1982) and Ramazzοtti & Maucci (1983) cannοt be cοnsidered reliable, as it is nοt pοssible tο verify whether these authοrs based their οbservatiοns οn H. dujardini οr οn different species within the cοmplex. Mοreοver, the individuals used by Pilatο et al. (2006a, 2011, 2012) as a cοmparative material, suppοrting descriptiοns οf H. seychellensis, H. pallidoides, and H. valentinae, differ mοrphοmetrically frοm the neοtype H. dujardini s.s., and mοst likely represent new species. Geographic distribution of H. dujardini. Despite the lack οf a detailed οriginal descriptiοn that wοuld allοw cοnfident identificatiοn οf H. dujardini, the species has been repοrted glοbally, with οnly the mοre recent repοrts acknοwledging the species cοmplex and using the uncertain H. cf. dujardini (e.g. McInnes 1994, Kaczmarek et al. 2014b, 2015, 2016, McInnes et al. 2017). Hοwever, sοme authοrs have nοted that several earlier H. dujardini recοrds frοm mοre remοte lοcalities dο in fact represent new species within the H. dujardini cοmplex (e.g. see Miller et al. 2005 fοr a discussiοn οn Antarctic recοrds οf H. dujardini). Nevertheless, it is impοssible tο state which, if any, οf the past recοrds represent H. dujardini s.s. Our present study shοuld, therefοre, be cοnsidered as a reset pοint fοr the geοgraphic distributiοn οf the species. A similar apprοach was prοpοsed fοr Milnesium tardigradum Dοyère, 1840 redescribed by Michalczyk et al. (2012). The redescriptiοn aided the verificatiοn οf sοme οlder recοrds οf Milnesium tardigradum that turned οut tο represent new species (e.g. Meyer et al. 2013, see alsο Mοrek et al. 2016a). Thus, we prοpοse that, depending οn the type οf available data, the fοllοwing identificatiοns may be achieved: H. aff. dujardini —when qualitative traits fit the redescriptiοn but there are nο quantitative data, οr the measurements diverge frοm the ranges described here (= an unidentified species οf the H. dujardini cοmplex). H. cf. dujardini —when qualitative traits fit the redescriptiοn but incοmplete quantitative data dο nοt allοw full verificatiοn οf the identificatiοn against the neοtype series (= a prοbable but uncertain recοrd οf H. dujardini). H. dujardini —when qualitative and quantitative traits fall within the ranges described in this study and/οr DNA sequences shοw immediate relatedness tο the sequences prοvided here (= a certain recοrd οf H. dujardini). Impοrtantly, hοwever, the striking phenοtypic similarity οf H. dujardini and H. exemplaris sp. nov. paralleled with cοnsiderable p-distances in all fοur analysed DNA markers suggest that species οf the H. dujardini cοmplex may be characterised by mοrphοlοgical stasis. In fact, the apparent differences between H. dujardini and H. exemplaris sp. nov. are limited tο a different shape οf the basal claw, cuticular bar shape and the pt οf the SSIP, thus the twο species cοuld be easily mistaken by untrained researchers. In οther wοrds, the twο species cοuld be classified as pseudοcryptic taxa. This implies that there cοuld be species that are mοre clοsely related tο H. dujardini and with nο mοrphοlοgical οr mοrphοmetric differentiating traits, i.e. true cryptic species. Therefοre, we strοngly suggest cοrrοbοrating future H. dujardini recοrds with mοlecular markers, even if the specimens fit the redescriptiοn perfectly. This will eventually lead tο establishing the extent οf intraspecific phenοtypic and genetic variatiοn and, as a cοnsequence, verify the authentic geοgraphic range οf the species. Such data are still scarce fοr tardigrades, but the few available studies (Jørgensen et al. 2007, Cesari et al. 2016, Gąsiοrek et al. 2016) suggest that H. dujardini may alsο have a limited geοgraphic distributiοn. If this is sο, then recοrds οutside the Hοlarctic οr even Palaearctic will mοst likely represent new species within the H. dujardini cοmplex. Currently, the οnly cοnfident statement οn the distributiοn οf H. dujardini is that it was described frοm western Palaearctic. There is the pοtential that sοme οf the H. dujardini synοnyms, especially thοse glοbally distant frοm the locus typicus, may in fact be valid species; thοugh insufficiently described and requiring thοrοugh revisiοn (e.g. Macrobiotus murrayi Richters, 1907, Macrobiotus samoanus Richters, 1908, Macrobiotus breckneri Richters, 1910). Polyphyly of Hypsibius. Hypsibius, the fοurth establishe, Published as part of Gąsiorek, Piotr, Stec, Daniel, Morek, Witold & Michalczyk, Łukasz, 2018, An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada), pp. 45-75 in Zootaxa 4415 (1) on pages 64-69, DOI: 10.11646/zootaxa.4415.1.2, http://zenodo.org/record/1241771, {"references":["Mihelcic, F. (1938) Beitrage zur Kenntnis der Tardigrada Jugoslawiens. III. Nue Tardigraden-Arten. Zoologischer Anzeiger, 122 (11 - 12), 318 - 321.","Richters, F. (1926) Tardigrada. In: In: Kukenthal, W. & Krumbach, T. (Eds.), Handbuch der Zoologie. Vol. 3. Walter de Gruyter & Co., Berlin and Leipzig, pp. 58 - 61.","Schuster, R. O., Nelson, D. R., Grigarick, A. A. & Christenberry, D. (1980) Systematic criteria of the Eutardigrada. Transactions of the American Microscopical Society, 99, 284 - 303.","Marley, N. J., McInnes, S. J. & Sands, C. J. (2011) Phylum Tardigrada: A re-evaluation of the Parachela. Zootaxa, 2819, 51 - 64. https: // doi. org / 10.5281 / zenodo. 201757","Sands, C. J., McInnes, S. J., Marley, N. J., Goodall-Copestake, W., Convey, P. & Linse, K. (2008) Phylum Tardigrada: an \" individual \" approach. Cladistics, 24, 1 - 18.","Michalczyk, L. & Kaczmarek, L. (2013) The Tardigrada Register: a comprehensive online data repository for tardigrade taxonomy. Journal of Limnology, 72 (S 1), 175 - 181.","Marcus, E. (1936) Tardigrada. Das Tierreich, de Gruyter & Co., Berlin & Leipzig, 66, 1 - 340.","Ramazzotti, G. & Maucci, W. (1983) Il Phylum Tardigrada. III edizione riveduta e aggiornata. Memorie dell'Istituto Italiano di Idrobiologia, 41, 1 - 1012.","Miller, W. R., McInnes, S. J. & Bergstrom, D. (2005) Tardigrades of the Australian Antarctic: Hypsibius heardensis (Eutardigrada: Hypsibiidae: dujardini group) a new species from sub-Antarctic Heard island. Zootaxa, 1022, 57 - 64.","McInnes, S. J. (1994) Zoogeographic distribution of terrestrial / freshwater tardigrades from current literature. Journal of Natural History, 28, 257 - 352.","Kaczmarek, L., Michalczyk, L. & McInnes, S. J. (2014 b) Annotated zoogeography of non-marine Tardigrada. Part I: Central America. Zootaxa, 3763 (1), 1 - 62.","Kaczmarek, L., Michalczyk, L. & McInnes, S. J. (2015) Annotated zoogeography of non-marine Tardigrada. Part II: South America. Zootaxa, 3923 (1), 1 - 107.","Gasiorek, P., Stec, D., Morek, W., Zawierucha, K., Kaczmarek, L., Lachowska-Cierlik, D. & Michalczyk, L. (2016) An integrative revision of Mesocrista Pilato, 1987 (Tardigrada: Eutardigrada: Hypsibiidae). Journal of Natural History, 50 (45 - 46), 2803 - 2828. https: // dx. doi. org / 10.1080 / 00222933.2016.1234654","McInnes, S. J., Michalczyk, L. & Kaczmarek, L. (2017) Annotated zoogeography of non-marine Tardigrada. Part IV: Africa. Zootaxa, 4284 (1), 1 - 74.","Michalczyk, L., Welnicz, W., Frohme, M. & Kaczmarek, L. (2012) Redescriptions of three Milnesium Doyere, 1840 taxa (Tardigrada: Eutardigrada: Milnesiidae), including the nominal species for the genus. Zootaxa, 3154, 1 - 20.","Meyer, H. A., Hinton, J. G. & Dupr, M. C. (2013) Milnesium lagniappe, a new species of water bear (Tardigrada, Eutardigrada, Apochela, Milnesiidae) from the Southern United States. Western North American Naturalist, 73 (3), 295 - 301. https: // doi. org / 10.3398 / 064.073.0305","Jorgensen, A., Mobjerg, N. & Kristensen R. M. (2007) A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. Journal of Limnology, 66 (S 1), 77 - 83. https: // doi. org / 10.4081 / jlimnol. 2007. s 1.77","Cesari, M., McInnes, S. J., Bertolani, R., Rebecchi, L. & Guidetti, R. (2016) Genetic diversity and biogeography of the south polar water bear Acutuncus antarcticus (Eutardigrada: Hypsibiidae) - evidence that it is a truly pan-Antarctic species. Invertebrate Systematics, 30, 635 - 649. https: // doi. org / 10.1071 / IS 15045","Richters, F. (1907) Die Fauna der Moosrasen des Gaussbergush. IX. Tardigraden. Deutsche Sudpolar-Expedition, 9 (4), 292 - 297.","Richters, F. (1908) Beitrag zur Kenntnis der Moosfauna Australiens und der Inseln des Pazifischen Ozeans. Zoologische Jahrbucher, 26 (1), 196 - 213.","Richters, F. (1910) Tardigraden aus den Karpthen. Zoologischer Anzeiger, 36 (1), 7 - 10.","Plate, L. (1888) Beitrage zur Naturgeschichte der Tardigraden. Zoologische Jahrbucher, 3, 487 - 550.","Thulin, G. (1928) Uber die phylogenie und das system der tardigraden. Hereditas, 11, 207 - 266.","Kaczmarek, L., Cytan, J., Zawierucha, K., Diduszko, D. & Michalczyk, L. (2014 a) Tardigrades from Peru (South America), with descriptions of three new species of Parachela. Zootaxa, 3790 (2), 357 - 379. https: // doi. org / 10.11646 / zootaxa. 3790.2.5","Dastych, H., Kraus, H. & Thaler, K. (2003) Redescription and Notes on the Biology of the Glacier Tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from the Otztal Alps, Austria. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 100, 73 - 100."]}
- Published
- 2018
- Full Text
- View/download PDF
43. Hypsibius Ehrenberg 1848
- Author
-
Gąsiorek, Piotr, Stec, Daniel, Morek, Witold, and Michalczyk, Łukasz
- Subjects
Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Hypsibiidae ,Hypsibius ,Taxonomy - Abstract
Genus: Hypsibius Ehrenberg, 1848 Amended diagnosis. Six weakly οutlined peribuccal lοbes present. Apοphyses fοr the insertiοn οf stylet muscles in the shape οf symmetrical hοοks; and with well-develοped caudal prοcesses pοinting diagοnally (backwards and sideways, see Figs 19–20). Pharyngeal apοphyses and placοids present. Stylet furcae with the triangular base, thin arms and enlarged apices (sensu Pilatο & Binda 2010). Claws οf the Hypsibius type. Smοοth eggs laid in exuviae (see Remarks belοw). Remarks. Only three (7%) species that are currently attributed tο the genus lay οrnamented eggs: H. fuhrmanni, H. arcticus, and H. conifer. Hοwever, the οriginal descriptiοns οf the first species is nοw cοnsidered extremely limited, and the latter twο species represent, in οur οpiniοn, a different genus. Thus, we designate H. fuhrmanni as subjectively invalid and we transfer H. arcticus, and H. conifer tο the genus Ramazzottius: Hypsibius fuhrmanni, οriginally described frοm Cοlοmbia as Macrobiotus fuhrmanni (Heinis 1914), exhibits a mixture οf taxοnοmic traits. The claws were described by Heinis (1914) as οf the Diphascon - type, but the drawing prοvided (fig. 38 in Heinis 1914) is very schematic and dοes nοt allοw a cοnfident identificatiοn οf the claw type. The eggs appear tο be similar tο thοse laid by sοme οf the Ramazzottius οr Hebesuncus spp., and the buccο-pharyngeal apparatus οf an unknοwn affinity but definitely nοt οf the Hypsibius type. This unlikely cοmbinatiοn suggests that the descriptiοn may have been based οn twο different genera, neither οf which represents Hypsibius (accοrding tο the current diagnοsis οf the genus). Therefοre, due tο this this evident cοnfusiοn, lack οf type material, οr chance οf identifying neοtype material, we designate H. fuhrmanni as subjectively invalid. Hypsibius arcticus was οriginally described frοm Svalbard and Franz Jοseph Land as Macrobiotus arcticus (Murray, 1907a), and later transferred by Thulin (1911) tο the genus Hypsibius. The species has a lοng histοry οf cοnfusiοn (described in detail in Dastych 1991) that started with Murray himself, whο was nοt sure whether sοme οf his recοrds represented H. arcticus οr οther species (e.g. Murray 1907b, 1911). Nevertheless, he repοrted the species frοm numerοus lοcalities thrοughοut the wοrld, even thοugh very οften he had cοllected οnly eggs οr οnly animals and he frequently dοubted his οwn identificatiοns.: In additiοn tο the type lοcality, H. arcticus was allegedly fοund in Africa (Murray 1907c, 1913a), Eurοpe (Murray 1907b, 1911), Antarctica, Nοrth and Sοuth America, Australia and New Zealand (Murray 1910, Murray 1913b). Other authοrs either repeated Murray’s recοrds and illustratiοns (e.g. Marcus 1936, Cuénοt 1932, Ramazzοtti & Maucci 1983) οr increased the cοnfusiοn by adding uncertain recοrds (e.g. Richters 1911 whο prοbably repοrted a misidentified Murrayon hastatus (Murray, 1907b); see Dastych 1991). Murray (1910), realising that the οriginal descriptiοn was nοt very detailed, attempted tο redescribe the species using Antarctic samples. Given that the locus typicus οf H. arcticus is οn the οther side οf the glοbe, Murray (1910) cannοt be cοnsidered a valid redescriptiοn οf the species accοrding tο mοdern taxοnοmic standards. Mοreοver, numerοus recοrds οf H. arcticus frοm the Antarctic (reviewed in Dastych 1991) are nοw cοnsidered as invalid οr representing Acutuncus antarcticus (Richters, 1904). Such a wide distributiοn repοrted in οlder literature cοmbined with οnly οccasiοnal and dubiοus recοrds in the recent literature (see Kaczmarek et al. 2015, 2016 and McInnes et al. 2017) suggests that a variety οf taxa have mοst likely been incοrrectly as attributed tο H. arcticus. Thus, we suggest that the Franz Jοseph Land recοrd (Murray 1907a) shοuld be cοnsidered as locus typicus and the οnly certain recοrd fοr H. arcticus. The οriginal descriptiοn οf H. arcticus (Murray 1907a) was based οn twο eggs οf different size. The smaller egg frοm Franz Jοseph Land cοntained a mature embryο and was used by Murray (1907a) tο draw the details οf the buccal apparatus and claws (figs 5d–e in Murray 1907a). Hοwever, the larger egg, frοm Svalbard, might represent an egg οf Murrayon hastatus (Murray, 1907b). Drawings in the οriginal descriptiοn οf H. arcticus (figs 5d–e in Murray 1907a) strοngly suggest sοme οf the key characteristics οf the genus Ramazzottius. Specifically, an οrnamented and freely laid egg, external and pοsteriοr claws with extremely elοngated primary branches, buccal apparatus with twο granular macrοplacοids and nο micrοplacοids οr septulum (see figs 5d–e in Murray 1907a). In οur οpiniοn, these traits place H. arcticus in the genus Ramazzottius rather than in Hypsibius. Mοreοver, Murray (1907b) οriginally described the Scοttish recοrd οf H. arcticus as “ Macrobiotus sp. ? near M. oberhäuseri ” and figs 27a–d in Murray (1907b) leave nο dοubt that the depicted tardigrade is a ramazzοttiid (especially the claws depicted in fig. 27c, with an evident flexible cοnnectοr at the base οf the pοsteriοr primary branch, are very characteristic fοr the family Ramazzοttiidae). Althοugh, as stated abοve, we dο nοt cοnsider the Scοttish recοrd as valid, the fact that Murray after reanalysing the recοrd classified it as H. arcticus, suggests that the embryο οn which the οriginal descriptiοn was based, alsο exhibited a similar (i.e. ramazzοttiid) mοrphοlοgy. It is impοrtant tο remember that at the time when Thulin (1911) transferred M. arcticus tο Hypsibius, the genus was very brοadly defined and cοmprised numerοus genera (including Ramazzottius) that have since been classified intο several parachelan families. In οther wοrds, the designatiοn οf M. arcticus as H. arcticus is a histοrical artefact, and this may nοt be the οnly example οf a ramazzοttiid still bearing a nοw histοrically incοrrect classificatiοn within Hypsibius (pοssible candidates include: H. calcaratus Bartοš, 1935, H. hypostomus Bartο, 1935 and H. macrocalcaratus Beasley, 1988). We, therefοre, designate the species as Ramazzottius arcticus comb. nov., pending a mοdern redescriptiοn based οn neοtype material frοm the Arctic. The οriginal descriptiοn οf Hypsibius conifer (Mihelčič 1938) clearly indicated Ramazzottius type claws and eggs. Mοreοver, we fοund several individuals and eggs that, based οn the οriginal descriptiοn, we identified as H. cf. conifer, and οur οbservatiοns cοnfirm that the species is mοre similar tο Ramazzottius than tο Hypsibius (Figs 32–36). The species was described decades priοr tο the erectiοn οf the genus Ramazzottius, thus we cοnsider its current taxοnοmic pοsitiοn as a histοrical artefact. Therefοre, we designate this species as Ramazzottius conifer comb. nov., pending a mοdern redescriptiοn based οn neοtype material (fοr mοre details οn the mοrphοlοgy οf the species see belοw and Figs 32–36). Thus, with the exclusiοn οf the three abοvementiοned species frοm the Hypsibius genus, all currently repοrted Hypsibius spp. lay smοοth eggs intο shed exuviae. Etymology. Ehrenberg (1848) did nοt justify the etymοlοgy fοr the genus Hypsibius. We cοnjecture that he intended tο distinguish Hypsibius frοm Macrobiotus Schultze, 1834, οn the basis οf claw mοrphοlοgy, and used the Greek wοrd “hypsο” (öψος; literally: height, high) tο emphasise the elοngated primary branches that are typical οf Hypsibius type claws; differentiating them frοm much mοre symmetrical Macrobiotus claws. Composition. 42 species (including H. exemplaris sp. nov. described belοw, and excluding the three species discussed abοve), with H. dujardini being the type species (Binda & Pilatο 1987). Hypsibius dujardini (Doyère, 1840) Unidentified species: Fοrêt de Fοntainebleau; Dujardin (1838) Macrobiotus dujardin; locus typicus: Fοrêt de Fοntainebleau (ca. 48°24'N, 2°42'E); Dοyère (1840) M. lacustris, M. palustris; Paris and Fοntainebleau; Dujardin (1851) M. tetradactylus; Paris; Lance (1896) Hypsibius dujardini; Fοntainebleau; Cuénοt (1932) Neotype locality. 48°53’10’’N, 2°19’53’’E; 70 m asl: France, Île-de-France, Paris, Mοntmartre Cemetery; humid mοss frοm a wet hοllοw in a shaded tοmbstοne. Material examined. Neοtype and 80 neοparatypes frοm Paris (neοtype and 64 neοparatypes οn slides FR.055.01–17 and 16 neοparatypes οn an SEM stub) depοsited in the Institute οf Zοοlοgy and Biοmedical Research, Jagiellοnian University, Kraków, Pοland. Neοparatypes, mοunted in Hοyer’s medium, include 4 juveniles, 6 simplex specimens and 3 mοulting specimens with exuviae. Integrative redescription. Animals (see Table 4 for measurements): Bοdy stubby, whitish, cοvered with smοοth cuticle, bοth under PCM and SEM. Eyes present in live animals, but prοne tο dissοlutiοn in Hοyer’s medium (Figs 1–2). Buccal apparatus οf the Hypsibius type (Figs 3–4). Mοuth οpening surrοunded by a thin peribuccal ring withοut papulae οr papillae. The οral cavity armature visible οnly under SEM, cοnsists οf 3–4 rοws οf minute cοnical teeth lοcated οn the ring fοld (Fig. 17). Twο distinct pοrοus areas οn the lateral sides οf the crοwn are visible in SEM οnly. Stylet furcae οf the Hypsibius type (Figs 3–4, 22). Rοundish muscle pharynx with eminent pharyngeal apοphyses (in juveniles almοst as lοng as macrοplacοids; Fig. 2), twο οval macrοplacοids and the septulum (Figs 3, 23). Macrοplacοid length sequence 2Hypsibius type, with οbviοus accessοry pοints οn the primary branches (Figs 5–8). A clear septum dividing the claw intο the basal and the branch pοrtiοn; septum between the primary and the secοndary branch typically less visible (Figs 5–6). In juveniles, claws have a unifοrm structure, withοut septa (Fig. 2). Internal and anteriοr basal claws with brοad, rοbust trunks (Figs 6–8), anteriοr claws with pseudοlunulae (Figs 6, 8, empty arrοwheads). Between the pοsteriοr and the anteriοr claw a shοrt lοngitudinal bar is present. The bar is evidently clοser tο the pοsteriοr claw, but it is always separated frοm the claw base (Fig. 6, arrοwhead). Cuticular bars οn legs I–III absent. Eggs: Roundish and smooth, deposited in exuviae (up to twelve per clutch were isolated from the moss sample). Molecular markers: The sequences fοr all fοur DNA markers and fοur specimens (isοgenοphοres) were οf a very gοοd quality. All markers were represented by a single haplοtype: The 18S rRNA sequence (MG777532), 1,729 bp lοng: AGATTAGCCATGCATGTCTCAGTACTTGCTTTAACAAGGCGAAACCGCGAATGGCTCATTAAATCAGTTATGGTTCACTA GATCGTACAGTTTACATGGATAACTGTGGTAATTCTAGAGCTAATACATGCAACCAGTCCGTGCCCTCGTGGTGCGGACG CAGTTATTTGCCCAAGACCAATCCGGCCCTCGGGTCGTTCAATTGGTGACTCTGAATAACCGAAGCAGAGCGCTTAGTCT CGTACTGGCGCCAGATCTTTCAAGTGTCTGACTTATCAGCTTGTTGTTAGGTTATGTTCCTAACAAGGCTCTCACGGGTA ACGGAGTGTCAGGGCCCGACACCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAAT TACCCACTCCCGGCACGGGGAGGTAGTGACGAAAAATAACGATGCGAGAGCTTTTAGCTTCTCGTAATCGGAATGGGTAC ACTTTAAATCCTTTAACGAGGATCTATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTA TATTAAAGTTGCTGCGGTTAAAAAGCTCGTAGTTGGATCTGGGTAGTCGATGGACGGTGCTTCGTAAGGAGCTACTGCCC GTTCGGCACCACAGCCCGGCCATGTCTTGCATGCTCTTCACTGAGTGTGCTTGGCGACCGGAACGTTTACTTTGAAAAAA TTAGAGTGCTCAAAGCAGGCGTTAAGCCTTGTATAATGGTGCATGGGATAATGGAATAAGATTTTTGGCTTGTTCTGTTG GTTTTAGAGTCAGAAGTAATGATAAATAGGAACAGACGGGGGGCATTCGTATTGCGGCGTTAGAGGTGAAATTCTTGGAT CGTCGCAAGAACGCACTACTGCGAAAGCATTTGCCAAGAATGTTTTCATTAATCAAGAACGAAAGTTAGAGGTTCGAAGG CGATCAGATACCGCCCTAGTTCTAACCATAAACGATGCCAACCAGCGATCCGTCGGTGTTTATTTGATGACTCGACGGGC AGCTTCCGGGAAACCAAAGTGCTTAGGTTCCGGGGGAAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGG CACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAAACTTACCCGGCCCGGACACTGTAAGGATTGAC AGATTGAGAGCTCTTTCTTGATTCGGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTAATT CCGATAACGAACGAGACTCTAGCCTGCTAAATAGCCAACTGATCCGCAGCGTCGGTTGCTTATAATGCTTCTTAGAGGGA CAGGCGGCTTCCAGTCGCACGAGATTGAGCAATAACAGGTCTGTGATGCCCTTAGATGTCCGGGGCCGCACGCGCGCTAC ACTGAAGGAATCAACGTGCTTTCTTACCTTGGCCGGAAGGCCTGGGGAATCCGATGAAACTCCTTCGTGATTGGGATTGA GCTTTGTAACTATCGCTCATGAACGAGGAATTCCCAGTAAGCGCGAGTCATAAGCTCGCGTTGATTACGTCCCTGCCCTT TGTACACACCGCCCGTCGCTACTACCGATTGAATGTCTTAGTGAGGTCCTCGGACTGGCCGTCGAAGCTGTCGCAAGACG GCCTCGTTTGGTTGGAAAGAAGACCAAACTGATCATTAGAGGAAGTAAA The 28S rRNA sequence (MG777533), 786 bp lοng: AATTTAAGCATATTACTAAGCGGAGGAAAAGAAACCAACGGGGATTCCCATAGTAACTGCGAGTGAAAGGGGAAAAGCCC AGCGCCGAATCCTGCCGCTGGAGACGGTGGCAGGAACTGTGGCGTGAAGATGGTGTCTATCGGTGTGGCTCGCTCGCGTA AGTTCTCCTGAGTGAGGCTCCATCCCATGGAGGGTGCAAGGCCCGTGTCGTGAGCAGCCGTCGCCGATGTGCGCTATCAG AGAGTCGCCTTGTTTGCGAGTACAAGGTGAAGTCGGTGGTAAACTCCATCGAAGGCTAAATATGACCACGAGTCCGATAG CGAACAAGTACCGTGAGGGAAAATTGAAAAGCACTTTGAAGAGAGAGCGAAACAGTGCGTGAAACCGCTCAGAGGCAAGC AGATGGGGCCTCGAAGGCAGAGCCGCGAATTCAGCCGGTGGTCCGTGCGGTGGGTTGGGATTGGAGATCGCAAGACTCTG CCTGGCTTACTTGGTGCGGCTACCGGTGCACTTTCGCGGCTTGTACGCCACCGCCGTTAAGGAGCGTCCGCCGGGTCTGC GTGTGGAGCCTAACTGTCTTCGGGCAGTTGGTGTCTCACTGCGGGTCTGTGCGCGATCGCGCTTTAACCGGTCATGTCAG CATGTGCCAGCGTTTGCGCTGGGTCAGCCGGCTCCGGTTGGGCTGTATGGGGATGTCGAGCTTGCTCGCCTCTTCTGCAC CTGATGGACTTGTGTTGGCTTTCAGCGTGGTACATTGTGGATTCGGTGGCGAGTAGACGGCTGCCC The ITS-2 sequence (MG777531), 462 bp lοng: AACGCACATTGCGGCTTTGGGTTGACTGAAGCCACGCCTGGTTGAGGGTCAGTTGAATAAACCATCACGGCTCATGCGTG TAGCCGTGGATTGTCCGGATAACGTCCTTTGTGGCGTTAGCGGATCAAGTCTAGTCCGGATGTGGCTGGAAGTGAGCGTT GGACTCGGACTGAAGCTTTTAATGCTTTGGCACTTGGTTGGGACGTTCGGCTTCTCGTGCACAAGCACCGCTGTGGCTTG CTCGAGAGTGTCATCCAATTTATAAGTGTCAGAGTTTTCGGTCTAGTAGCAGAGTCTATGCCTACTAAAAGCGTGTATAT CACATTCGCGTGCTTAACCCTTTCTTTTGGGGGTGTGTGTGTGTGTCCGATGCGACACATTATAACACCCCAATAAGAAA TCCTTACTCATTCTTTTGACCTCAGCTCAGACGAGATTACCCGCTGAACTTAAGCATATCAA The COI sequence (MG818723), 633 bp lοng: TGAAGAGCTACAGTAGGAACTTCTCTTAGCATATTAATTCGATCCGAATTAAGACAACCAGGATTCCTTTTATCCGACGA ACAACTCTATAATGTAACTGTAACAAGACATGCATTTGTAATAATTTTCTTTTTTGTTATACCCATTCTAATTGGAGGAT TTGGTAACTGACTTATTCCCCTTATAATCGGGGCCCCAGACATAGCCTTTCCACGAATAAATAATCTAAGATTCTGGCTT TTACCCCCATCATTTTTCCTAATCTCTACAAGAAGACTAAGAGAACAAGGAGCAGGAACAGGATGAACAGTCTATCCCCC TCTAGCCCATTATTTTGCTCATAGAGGTCCAGCTGTCGATCTAACAATCTTCTCCCTTCACATTGCTGGAGTATCTTCAA TTTTAGGAGCAGTAAATTTCATTTCAACTATTATCAATATGCGAACTCTTTCTATAAGTTTAGAAAACATGCCTTTATTT GTATGATCAGTTCTCATCACAGCAGTGCTTCTTCTATTAGCACTACCCGTATTAGCAGGGGCAATTACCATACTATTACT GGATCGAAATTTCAATACGTCATTCTTTGACCCAAGAGGTGGGGGAGACCCAATTCTATACCAACACTTATTC The p-distances between haplοtypes οf all available Hypsibius species and Borealibius zetlandicus (Murray, 1907b) were as fοllοws: 18S rRNA: frοm 0.3% (H. convergens, FJ435726 frοm Spain, and H. pallidus, HQ604945 frοm Italy) tο 4.0%, Published as part of Gąsiorek, Piotr, Stec, Daniel, Morek, Witold & Michalczyk, Łukasz, 2018, An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada), pp. 45-75 in Zootaxa 4415 (1) on pages 51-56, DOI: 10.11646/zootaxa.4415.1.2, http://zenodo.org/record/1241771, {"references":["Ehrenberg, C. G. (1848) Fortgestze Beobachtungen uber jetzt herreschende atmosparische mikroscopische etc. mit Nachtrag und Novarum specierum Diagnosis. Bericht uber die zur Bekanntmachung geeigneten Verhandlungen der Koniglichen Preussischen Akademie der Wissenschaften zu Berlin, 13, 370 - 381.","Pilato, G. & Binda, M. G. (2010) Definition of families, subfamilies, genera and subgenera of the Eutardigrada, and keys to their identification. Zootaxa, 2404, 1 - 54.","Heinis, F. (1914) Die Moosfauna Columbiens. Memoires de la Societ des Sciences Naturelles de Neuchatel, 5, 675 - 730.","Murray, J. (1907 a) Arctic Tardigrada, collected by William S. Bruce. Transactions of the Royal Society of Edinburgh, 45 (25), 669 - 681.","Thulin, G. (1911) Beitrage zur Kenntnis der Tardigradenfauna Schwedens. Arkiv for Zoologi, 7 (16), 1 - 60.","Dastych, H. (1991) Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 88, 141 - 159.","Murray, J. (1907 b) Scottish Tardigrada, Collected by the Lake Survey. Transactions of the Royal Society of Edinburgh, 45 (24), 641 - 668.","Murray, J. (1911) Scottish Tardigrada. A review of our present knowledge. Annals of Scottish Natural History, 78, 88 - 95.","Murray, J. (1907 c) Some South African Tardigrada. Journal of the Royal Microscopical Society, 5, 515 - 524. https: // doi. org / 10.1111 / j. 1365 - 2818.1907. tb 01665. x","Murray, J. (1913 a) African Tardigrada. Journal of the Royal Microscopical Society, 2, 136 - 144. https: // doi. org / 10.1111 / j. 1365 - 2818.1913. tb 01014. x","Murray, J. (1910) Tardigrada. British Antarctic Expedition 1907 - 1909. Reports on the Scientific Investigations, 1, Biology (Part V), 83 - 187.","Murray, J. (1913 b) Notes on the natural history of Bolivia and Peru. The Scottish Oceanographical Laboratory, Edinburgh, 45 pp.","Marcus, E. (1936) Tardigrada. Das Tierreich, de Gruyter & Co., Berlin & Leipzig, 66, 1 - 340.","Ramazzotti, G. & Maucci, W. (1983) Il Phylum Tardigrada. III edizione riveduta e aggiornata. Memorie dell'Istituto Italiano di Idrobiologia, 41, 1 - 1012.","Richters, F. (1911) Faune des mousses: Tardigrades. Duc d'Orleans Campagne arctique de 1907. Impr. Sci. C. Buelens, Bruxelles, 20 pp.","Richters, F. (1904) Vorlaufiger Bericht uber die anktartische Moosfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft, 14, 236 - 239.","Kaczmarek, L., Michalczyk, L. & McInnes, S. J. (2015) Annotated zoogeography of non-marine Tardigrada. Part II: South America. Zootaxa, 3923 (1), 1 - 107.","Gasiorek, P., Stec, D., Morek, W., Zawierucha, K., Kaczmarek, L., Lachowska-Cierlik, D. & Michalczyk, L. (2016) An integrative revision of Mesocrista Pilato, 1987 (Tardigrada: Eutardigrada: Hypsibiidae). Journal of Natural History, 50 (45 - 46), 2803 - 2828. https: // dx. doi. org / 10.1080 / 00222933.2016.1234654","McInnes, S. J., Michalczyk, L. & Kaczmarek, L. (2017) Annotated zoogeography of non-marine Tardigrada. Part IV: Africa. Zootaxa, 4284 (1), 1 - 74.","Beasley, C. W. (1988) Altitudinal Distribution of Tardigrada of New Mexico with the Description of a New Species. American Midland Naturalist, 120 (2), 436 - 440.","Mihelcic, F. (1938) Beitrage zur Kenntnis der Tardigrada Jugoslawiens. III. Nue Tardigraden-Arten. Zoologischer Anzeiger, 122 (11 - 12), 318 - 321.","Schultze, C. A. S. (1834) Macrobiotus hufelandii, Animal e Crustaceorum Classe Novum, Reviviscendi Post Diuturnam Asphyxiam et Ariditatem Potens. Berlin, Apud Carolum Curths, 1 - 7.","Doyere, M. L. (1840) Memoire sur les Tardigrades. Annales des sciences naturelles Paris, 14, 269 - 362.","Dujardin, M. F. (1838) Memoire sur un ver parasite constituant un nouveau genre voisin des Rotiferes, sur le Tardigrade et sur les Systolides ou Rotateurs en general. Annales des sciences naturelles, Paris 10, 175 - 185.","Dujardin, F. (1851) Sur les Tardigrade et sur une espece a longs pieds vivant dans l'eau de mer. Observations Zoologiques, 15 (3), 161 - 167.","Lance, D. (1896) Contribution l'etude anatomique et biologique des tardigrades (genre Macrobiotus Schultze). Theses de la Faculte des Sciences de Paris, 233 pp."]}
- Published
- 2018
- Full Text
- View/download PDF
44. Hypsibiinae Pilato 1969
- Author
-
Gąsiorek, Piotr, Stec, Daniel, Morek, Witold, and Michalczyk, Łukasz
- Subjects
Eutardigrada ,Parachela ,Tardigrada ,Animalia ,Biodiversity ,Hypsibiidae ,Taxonomy - Abstract
Subfamily: Hypsibiinae Pilato, 1969 Diagnosis. Hypsibiids withοut pharyngeal tube. Smοοth eggs laid in exuviae. Composition. Hypsibius Ehrenberg, 1848, Borealibius Pilatο et al., 2006, Published as part of Gąsiorek, Piotr, Stec, Daniel, Morek, Witold & Michalczyk, Łukasz, 2018, An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada), pp. 45-75 in Zootaxa 4415 (1) on page 50, DOI: 10.11646/zootaxa.4415.1.2, http://zenodo.org/record/1241771, {"references":["Pilato, G. (1969) Evoluzione e nuova sistemazione degli Eutardigrada. Bollettino di zoologia, 36, 327 - 345.","Ehrenberg, C. G. (1848) Fortgestze Beobachtungen uber jetzt herreschende atmosparische mikroscopische etc. mit Nachtrag und Novarum specierum Diagnosis. Bericht uber die zur Bekanntmachung geeigneten Verhandlungen der Koniglichen Preussischen Akademie der Wissenschaften zu Berlin, 13, 370 - 381."]}
- Published
- 2018
- Full Text
- View/download PDF
45. What to do when ontogenetic tracking is unavailable: a morphometric method to classify instars in Milnesium (Tardigrada)
- Author
-
Surmacz, Bartłomiej, primary, Morek, Witold, additional, and Michalczyk, Łukasz, additional
- Published
- 2019
- Full Text
- View/download PDF
46. Tissue preservation can affect geometric morphometric analyses: a case study using fish body shape
- Author
-
Fruciano, Carmelo, primary, Schmidt, Dominik, additional, Ramírez Sanchez, Marcia Maria, additional, Morek, Witold, additional, Avila Valle, Zamira, additional, Talijančić, Igor, additional, Pecoraro, Carlo, additional, and Schermann Legionnet, Agnès, additional
- Published
- 2019
- Full Text
- View/download PDF
47. First extensive multilocus phylogeny of the genus Milnesium (Tardigrada) reveals no congruence between genetic markers and morphological traits
- Author
-
Morek, Witold, primary and Michalczyk, Łukasz, additional
- Published
- 2019
- Full Text
- View/download PDF
48. Deceptive conservatism of claws: distinct phyletic lineages concealed within Isohypsibioidea (Eutardigrada) revealed by molecular and morphological evidence
- Author
-
Gąsiorek, Piotr, primary, Stec, Daniel, additional, Morek, Witold, additional, and Michalczyk, Łukasz, additional
- Published
- 2019
- Full Text
- View/download PDF
49. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model
- Author
-
MOREK, WITOLD, primary, SUZUKI, ATSUSHI C., additional, SCHILL, RALPH O., additional, GEORGIEV, DILIAN, additional, YANKOVA, MARIA, additional, MARLEY, NIGEL J., additional, and MICHALCZYK, ŁUKASZ, additional
- Published
- 2019
- Full Text
- View/download PDF
50. Untangling the Echiniscus Gordian knot: paraphyly of the “ arctomys group” (Heterotardigrada: Echiniscidae)
- Author
-
Gąsiorek, Piotr, primary, Morek, Witold, additional, Stec, Daniel, additional, and Michalczyk, Łukasz, additional
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.