96 results on '"Mohammed Boujtita"'
Search Results
2. Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces
- Author
-
Sébastien Depienne, Mohammed Bouzelha, Emmanuelle Courtois, Karine Pavageau, Pierre-Alban Lalys, Maia Marchand, Dimitri Alvarez-Dorta, Steven Nedellec, Laura Marín-Fernández, Cyrille Grandjean, Mohammed Boujtita, David Deniaud, Mathieu Mével, and Sébastien G. Gouin
- Subjects
Science - Abstract
Abstract Methods for direct covalent ligation of microorganism surfaces remain poorly reported, and mostly based on metabolic engineering for bacteria and cells functionalization. While effective, a faster method avoiding the bio-incorporation step would be highly complementary. Here, we used N-methylluminol (NML), a fully tyrosine-selective protein anchoring group after one-electron oxidation, to label the surface of viruses, living bacteria and cells. The functionalization was performed electrochemically and in situ by applying an electric potential to aqueous buffered solutions of tagged NML containing the viruses, bacteria or cells. The broad applicability of the click-electrochemistry method was explored on recombinant adeno-associated viruses (rAAV2), Escherichia coli (Gram-) and Staphyloccocus epidermidis (Gram + ) bacterial strains, and HEK293 and HeLa eukaryotic cell lines. Surface electro-conjugation was achieved in minutes to yield functionalized rAAV2 that conserved both structural integrity and infectivity properties, and living bacteria and cell lines that were still alive and able to divide.
- Published
- 2023
- Full Text
- View/download PDF
3. Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores
- Author
-
Adrien Chauvin, Cyril Delacôte, Mohammed Boujtita, Benoit Angleraud, Junjun Ding, Chang-Hwan Choi, Pierre-Yves Tessier, and Abdel-Aziz El Mel
- Subjects
copper ,dealloying ,gold ,hillocks ,nanoporous ,Technology ,Chemical technology ,TP1-1185 ,Science ,Physics ,QC1-999 - Abstract
We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold–copper and gold–silver. We demonstrate that applying an electrochemical dealloying process to the gold–copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors.
- Published
- 2016
- Full Text
- View/download PDF
4. Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles
- Author
-
Mohammad Islam, Amine Achour, Khalid Saeed, Mohammed Boujtita, Sofia Javed, and Mohamed Abdou Djouadi
- Subjects
cobalt nanoparticles ,carbon nanotubes ,Nafion membranes ,nanocomposite films ,electrochemical process ,AFM ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
In this work, we report development of hybrid nanostructures of metal nanoparticles (NP) and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC) processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT). The X-ray photoelectron spectroscope (XPS) and atomic force microscope (AFM) studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM), reduction time (5, 20 s), and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution) depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (
- Published
- 2018
- Full Text
- View/download PDF
5. Electrochemistry coupled with mass spectrometry for the prediction of the environmental fate and elucidation of the degradation mechanisms of pesticides: current status and future prospects
- Author
-
Ranil Clément Tonleu Temgoua, Ignas Kenfack Tonlé, and Mohammed Boujtita
- Subjects
Public Health, Environmental and Occupational Health ,Environmental Chemistry ,General Medicine ,Management, Monitoring, Policy and Law - Abstract
The state of the art of existing/published work in the prediction of environmental degradation of pesticides by EC-MS/EC-LC-MS coupling was reviewed. Ways to improve EC-MS techniques in the prediction of environmental degradation were proposed.
- Published
- 2023
6. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling
- Author
-
Ugo Bussy, Renaud Boisseau, Mikaël Croyal, Ranil C. T. Temgoua, and Mohammed Boujtita
- Subjects
Electrochemistry ,Aristolochic Acids ,Oxidation-Reduction ,Biochemistry ,Mass Spectrometry ,Analytical Chemistry - Abstract
Small-molecule metabolism has been extensively studied in the past decades, notably driven by the development of new pharmaceutical ingredients. The understanding of metabolism is critical to the anticipation of reactive metabolite formation in vivo that is often associated with toxicity. Electrochemistry has been proposed to simulate the oxidoreductive metabolism reaction catalyzed by cytochrome P450, a family of microsomal enzymes strongly involved in xenobiotic metabolism. The implementation of an electrochemical cell online with mass spectrometry allows for the fast formation and identification of the reaction end products. This study discusses the ability of the synthetic electrochemical approach to simulate a complex lactamization reaction that involves the formation of reactive metabolites. Aristolochic acid I was used as a model molecule to evaluate the ability of electrochemical simulation to generate nitroso, hydroxylamine, N-hydroxylactam, lactam, and nitrenium ion metabolites.
- Published
- 2022
7. Trends in single-impact electrochemistry for bacteria analysis
- Author
-
Hassiba Smida, Arthur Langlard, Dorine Ameline, Christine Thobie-Gautier, Mohammed Boujtita, and Estelle Lebègue
- Subjects
Biochemistry ,Analytical Chemistry - Published
- 2023
8. Single Electrochemical Impacts of Shewanella oneidensis MR‐1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface
- Author
-
Hassiba Smida, François‐Xavier Lefèvre, Christine Thobie‐Gautier, Mohammed Boujtita, Catarina M. Paquete, and Estelle Lebègue
- Subjects
Electrochemistry ,Catalysis - Published
- 2022
9. Front Cover: Single Electrochemical Impacts of Shewanella oneidensis MR‐1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface (ChemElectroChem 1/2023)
- Author
-
Hassiba Smida, François‐Xavier Lefèvre, Christine Thobie‐Gautier, Mohammed Boujtita, Catarina M. Paquete, and Estelle Lebègue
- Subjects
Electrochemistry ,Catalysis - Published
- 2022
10. Comparative studies of new pyranylidene-based sensitizers bearing single or double anchoring groups for dye-sensitized solar cells
- Author
-
Mohammed Boujtita, Yann Pellegrin, Laurianne Wojcik, Sébastien Gauthier, Fabrice Odobel, Denis Jacquemin, Aurélien Planchat, Nicolas Le Poul, Patricia Guevara Level, Nadine Szuwarski, Françoise Robin-le Guen, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie, Electrochimie Moléculaires et Chimie Analytique (CEMCA), Université de Brest (UBO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), We thank the Région des Pays de la Loire, for financial support via LUMOMAT program. This work used the computational resources of the CCIPL installed in Nantes, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Anchoring dyes ,020209 energy ,Substituent ,γ-pyranylidene ,Anchoring ,Photovoltaic performance ,Electron donor ,02 engineering and technology ,Dye-sensitized solar cells ,Electrochemistry ,Photochemistry ,7. Clean energy ,chemistry.chemical_compound ,Substituent effect ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,TD-DFT calculations ,0202 electrical engineering, electronic engineering, information engineering ,[CHIM]Chemical Sciences ,Moiety ,General Materials Science ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Renewable Energy, Sustainability and the Environment ,Photovoltaic system ,Energy conversion efficiency ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Dye-sensitized solar cell ,chemistry ,Single and double ,0210 nano-technology - Abstract
International audience; Mono- and di-anchoring γ-pyranylidene-based organic dyes featuring D–π–A and D–(π–A)2 architectures have been engineered as sensitizers for applications in Dye-Sensitized Solar Cells (DSSCs). Their photophysical, electrochemical and photovoltaic properties were further investigated. TD-DFT calculations were performed to rationalize the trends observed in the optical and electrochemical properties of the dyes. The investigation of the photovoltaic performances of this series of new dyes provided structure–property relationships where their Power Conversion Efficiencies (PCE) could be correlated to structural features, such as the length of the π-conjugated spacer, the nature of the substituents on the pyranylidene electron donor moiety and the number of anchoring groups. Dye-Sensitized Solar Cells based on mono-anchoring dyes were more efficient than the corresponding cells based on di-anchoring analogues due to high dye loading. The highest Power Conversion Efficiency of 5.23% was achieved with the mono-anchoring 17a dye containing t-butyl substituent groups on the pyranylidene fragment and with one thienyl π-conjugated spacer.
- Published
- 2020
11. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry
- Author
-
Justine Luy, Christine Thobie-Gautier, Estelle Lebègue, Dorine Ameline, and Mohammed Boujtita
- Subjects
Liposome ,Chemistry ,Potassium ferrocyanide ,Phosphatidylethanolamines ,Bacterial Toxins ,Rhamnolipid ,Phospholipid ,Electrochemical Techniques ,General Medicine ,General Chemistry ,Chronoamperometry ,Electrochemistry ,Redox ,Catalysis ,chemistry.chemical_compound ,Liposomes ,Pseudomonas aeruginosa ,Biophysics ,Glycolipids ,Lipid bilayer ,Oxidation-Reduction - Abstract
The detection of Rhamnolipid virulence factor produced by Pseudomonas aeruginosa involved in nosocomial infections is reported by using the redox liposome single impact electrochemistry. Redox liposomes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine as a pure phospholipid and potassium ferrocyanide as an encapsulated redox content are designed for using the interaction of the target toxin with the lipid membrane as a sensing strategy. The electrochemical sensing principle is based on the weakening of the liposomes lipid membrane upon interaction with Rhamnolipid toxin which leads upon impact at an ultramicroelectrode to the breakdown of the liposomes and the release/electrolysis of its encapsulated redox probe. We present as a proof of concept the sensitive and fast sensing of a submicromolar concentration of Rhamnolipid which is detected after less than 30 minutes of incubation with the liposomes, by the appearing of current spikes in the chronoamperometry measurement.
- Published
- 2021
12. Recent advances in single liposome electrochemistry
- Author
-
Hassiba Smida, Christine Thobie-Gautier, Mohammed Boujtita, and Estelle Lebègue
- Subjects
Electrochemistry ,Analytical Chemistry - Published
- 2022
13. Electrochemistry-coupled to liquid chromatography-mass spectrometry-density functional theory as a new tool to mimic the environmental degradation of selected phenylurea herbicides
- Author
-
Nicolas Galland, Evangeline Njanja, Mohammed Boujtita, Ugo Bussy, Dimitri Alvarez-Dorta, Julie Hémez, Ranil Clément Tonleu Temgoua, Christine Thobie-Gautier, and Ignas Kenfack Tonle
- Subjects
chemistry.chemical_classification ,Spectrometry, Mass, Electrospray Ionization ,Herbicides ,Electrospray ionization ,Phenylurea Compounds ,Public Health, Environmental and Occupational Health ,General Medicine ,Monolinuron ,Management, Monitoring, Policy and Law ,Quinone ,Matrix (chemical analysis) ,Hydroxylation ,chemistry.chemical_compound ,chemistry ,Computational chemistry ,Liquid chromatography–mass spectrometry ,Chlortoluron ,Electrochemistry ,Environmental Chemistry ,Animals ,Humans ,Alkyl ,Density Functional Theory ,Chromatography, Liquid - Abstract
In vitro and in vivo experimental models, mainly based on cell cultures, animals, healthy humans and clinical trials, are useful approaches for identifying the main metabolic pathways. However, time, cost, and matrix complexity often hinder the success of these methods. In this study, we propose an alternative non-enzymatic method, using electrochemistry (EC) coupled to liquid chromatography (LC) – high resolution mass spectrometry (HRMS) – DFT theoretical calculations (EC/LC-MS/DFT) for the mimicry/simulation of the environmental degradation of phenylurea herbicides, and for the mechanism elucidation of this class of herbicides. Fenuron, monuron, isoproturon, linuron, monolinuron, metoxuron and chlortoluron were selected as relevant model compounds. The intended compounds are oxidized by EC, separated by LC and detected using electrospray ionization HRMS. The main oxidation products were hydroxylated compounds obtained by substitution and addition reactions. Unstable quinone imines/methines, rarely observed by conventional methods, have been identified during the oxidative degradation of phenylurea herbicides for the first time in this study. Some were directly observed and the others were trapped by glutathione GSH. Reactions such as hydrolytic substitutions (−Cl/+OH and −C3H7/+OH and −CH3/+OH and −OCH3/+OH), aromatic hydroxylation, alkyl carbon hydroxylation, dehydrochlorination/dehydromethylation/dehydromethoxylation and conjugation have been successfully mimicked. The obtained results, supported by theoretical calculations, are useful for simulating/understanding and predicting the oxidative degradation pathways of pesticides in the environment.
- Published
- 2021
14. (Digital Presentation) Electrochemical Single Impact Method for Electroactive Bacterial Detection Onto Carbon Ultramicroelectrode
- Author
-
Hassiba Smida, Christine Thobie-Gautier, Mohammed Boujtita, and Estelle Lebegue
- Abstract
This work aims to design a high sensitivity and selectivity biosensor based on the electrochemistry of single impacts onto ultramicroelectrode (UME) to detect and identify various bacterial strains. The main objective is to establish a unique electrochemical signature for each bacterial cell through the individual impact event signal on the surface of the UME [1, 2]. First, we focus on the detection of well-known electroactive Gram-negative bacteria such as Shewanella oneidensis in order to be able to selectively detect these different single cells. In this case, the strategy currently used is to record a chronoamperometric curve in an aqueous potassium phosphate buffer (pH = 7.4) solution containing a redox probe at an UME polarized at the oxidation or reduction potential of the electrochemical active aqueous species and to observe a “current step” when one bacterium impacts the UME, corresponding to a “blocking effect” [3] (Figure A). The response signal expected from single bacterium collision may also be a “current spike” corresponding to either the own electrochemical activity of the bacterium toward the redox probe and the UME applied potential or a “bouncing effect” of the bacterium which does not stick onto UME surface (Figure B). In order to be able to identify the type of bacterial cell striking the UME surface, an adapted functionalization (covalent grafting via reduction of diazonium aryl salts) with appropriate affinity (bio)chemical species such as antibodies or aptamers could be performed. This strategy could confer to the UME surface a selectivity of the signal generated during single impacts. For example, the electro-grafting of diazo-pyridinium cations for microbial fuel cell electrodes showed to promote and improve the development of bacterial electroactive films [4]. [1] E. Lebègue, N. L. Costa, R. O. Louro, F. Barrière, J. Electrochem. Soc. 16 (2020) 105501 [2] A. T. Ronspees, S. N.Thorgaard, Electrochimica Acta. 278 (2018) 412-420 [3] G. Guanyue, W. Dengchao, B. Ricardo, Z. Jinfang, M. Michael V. Anal. Chem. 90 (2018) 12123−12130 [4] H. Smida, E. Lebègue, J-F. Bergamini, F. Barrière, C. Lagrost, Bioelectrochemistry. 120 (2018) 157-165 Figure 1
- Published
- 2022
15. Luminol Anchors Improve the Electrochemical-Tyrosine-Click Labelling of Proteins
- Author
-
Mohammed Boujtita, Mathieu Mével, Dimitri Alvarez-Dorta, David Deniaud, Sébastien G. Gouin, Cathy Charlier, Sébastien Depienne, Ranil Clément Tonleu Temgoua, Mikaël Croyal, and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Circular dichroism ,Bioconjugation ,biology ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,Chemistry ,Lysine ,Chemical biology ,General Chemistry ,010402 general chemistry ,Ligand (biochemistry) ,01 natural sciences ,Combinatorial chemistry ,0104 chemical sciences ,Luminol ,chemistry.chemical_compound ,Biochemistry ,biology.protein ,Bovine serum albumin ,Tyrosine ,Conjugate - Abstract
New methods for chemo-selective modifications of peptides and native proteins are important in chemical biology and for the development of therapeutic conjugates. Less abundant and uncharged amino-acid residues are interesting targets to form less heterogeneous conjugates and preserve biological functions. Phenylurazole (PhUr), N-methylphenylurazole (NMePhUr) and N-methylluminol (NMeLum) derivatives were described as tyrosine (Y) anchors after chemical or enzymatic oxidations. Recently, we developed the first electrochemical Y-bioconjugation method coined eY-click to activate PhUr in biocompatible media. In this work, we assessed the limitations, benefits and relative efficiencies of eY-click conjugations performed with a set of PhUr, NMePhUr and NMeLum derivatives. Results evidenced a high efficiency of NMeLum that showed a complete Y-chemoselectivity on polypeptides and biologically relevant proteins after soft electrochemical activation. Side reactions on nucleophilic or heteroaromatic amino-acids such as lysine or tryptophan were never observed during mass spectrometry analysis. Myoglobine, bovine serum albumin, a plant mannosidase, glucose oxidase and the therapeutically relevant antibody trastuzumab were efficiently labelled with a fluorescent probe in a two-step approach combining eY-click and strain-promoted azide–alkyne cyclization (SPAAC). The proteins conserved their structural integrity as observed by circular dichroism and the trastuzumab conjugate showed a similar binding affinity for the natural HER2 ligand as shown by bio-layer interferometry. Compared to our previously described protocol with PhUr, eY-click with NMeLum species showed faster reaction kinetics, higher (complete) Y-chemoselectivity and reactivity, and offers the interesting possibility of the double tagging of solvent-exposed Y., We assessed the relative efficiencies of tyrosine anchors in the electrochemical conjugation of peptides and proteins. Luminol derivatives showed faster reaction kinetics, complete tyrosine-chemoselectivity, and possible double modification.
- Published
- 2021
16. (Invited) Detection of Bacterial Rhamnolipid Toxin By Redox Liposome Single Impact Electrochemistry
- Author
-
Estelle Lebegue, Justine Luy, Dorine Ameline, Christine Thobie-Gautier, and Mohammed Boujtita
- Abstract
The single-entity impact method is a very sensitive and powerful electroanalytical tool for biological and environmental purposes such as electrochemical detection of pathogens.[1] The versatility of ultramicroelectrodes (UMEs) gives unique and essential properties for electroanalytical sensing owing to their small size, high sensitivity, fast steady-state response, low double-layer charging current and minimal ohmic loss. The observation of these stochastic events can provide information on various single nanoparticles contrary to ensemble (bulk) measurements. The main advantage of studying collisions of single entities is the low limit of detection (in principle, one single species) inherent to this electroanalytical method and the ability to study single entities (cells, viruses, nanoparticles...) in real time (dynamic measurement).[2–4] Electrochemistry of single redox liposome impacts at an UME consists in detecting the electrolysis of a redox probe encapsulated inside a liposome when it is released at the UME after impact (or collision). The UME is polarized at the oxidation or reduction potential of the encapsulated redox probe and a concentration of several pico-molar of redox liposomes added to the aqueous buffer electrolyte is enough to detect “current spikes” in the chronoamperometry (i-t) curve corresponding to discrete collision events.[3,4] The electron transfer does not readily occur across a lipid bilayer, thus the electrolysis of the liposome redox active content after collision and membrane rupture or opening at the UME surface led to many studies dealing with the membrane permeation mechanism.[3,4] Here, our work is based on the previous results where no current spike was observed in the chronoamperometry curve because the redox DMPC liposomes did not break during impact (or collision) onto the UME surface.[3,4] Hence, the electrochemical sensing principle is based on the weakening of the liposomes lipid membrane upon interaction with a destructive bacterial virulence factor which leads upon impact at an UME to the breakdown of the liposomes and the release/electrolysis of its encapsulated redox probe, as previously reported.[5] In the presence of RL toxin in solution (acting like a surfactant in the lipid membrane), current spikes corresponding to the electrolysis of the encapsulated redox probe released from weakened liposomes are detected (see Figure). Thanks to the redox liposome single impact electrochemistry, the highest detection limit of RL toxin (500 nM) has been reached in comparison to several micromoles per liter previously reported.[5] [1] Lebègue, E.; Costa, N.L.; Louro, R.O.; Barrière, F. Communication—Electrochemical Single Nano-Impacts of Electroactive Shewanella Oneidensis Bacteria onto Carbon Ultramicroelectrode. J. Electrochem. Soc. 2020, 167, 105501, doi:10.1149/1945-7111/ab9e39. [2] Dick, J.E.; Lebègue, E.; Strawsine, L.M.; Bard, A.J. Millisecond Coulometry via Zeptoliter Droplet Collisions on an Ultramicroelectrode. Electroanalysis 2016, 28, 2320–2326, doi:10.1002/elan.201600182. [3] Lebègue, E.; Anderson, C.M.; Dick, J.E.; Webb, L.J.; Bard, A.J. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode. Langmuir 2015, 31, 11734–11739, doi:10.1021/acs.langmuir.5b03123. [4] Lebègue, E.; Barrière, F.; Bard, A.J. Lipid Membrane Permeability of Synthetic Redox DMPC Liposomes Investigated by Single Electrochemical Collisions. Anal. Chem. 2020, 92, 2401–2408, doi:10.1021/acs.analchem.9b02809. [5] Luy, J.; Ameline, D.; Thobie-Gautier, C.; Boujtita, M.; Lebègue, E. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry. Angew. Chem. Int. Ed. 2021, accepted , doi: 10.1002/anie.202111416. Figure 1
- Published
- 2022
17. Influence of the copper deficiency and anionic composition on band-energy diagram of bulk kesterite CZTSSe
- Author
-
Alain Lafond, Adèle Renaud, Pierre Bais, Mohammed Boujtita, Stéphane Jobic, Catherine Guillot-Deudon, Maria Teresa Caldes, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Conseil Régional des Pays de la Loire / Region Pays de la Loire and the Synchrotron SOLEIL, Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Band gap ,Analytical chemistry ,Cu2ZnSn(SSe)4 ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,law.invention ,symbols.namesake ,law ,Solar cell ,XPS ,[CHIM]Chemical Sciences ,General Materials Science ,Kesterite ,Absorption (electromagnetic radiation) ,Chemical composition ,Flat band potentials ,Valence (chemistry) ,Mechanical Engineering ,Fermi level ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Photovoltaics ,Mechanics of Materials ,symbols ,engineering ,0210 nano-technology ,Cu-poor ,Stoichiometry - Abstract
International audience; The influence of the chemical composition on band edges and Fermi level of the Cu2ZnSn(SxSe1-x)4 stoichiometric compounds was investigated. The Cu-poor compounds, Cu1.70Zn1.15SnSSe3 and Cu1.70Zn1.15SnS2Se2, were also studied according to the same approach. As already reported, the absorption threshold increases linearly from 1.05 to 1.48 eV with increasing sulfur content. Simultaneously, the conduction band moves from −4.4 to −3.8 eV respectively, while the position of the uppermost level of the valence bands and the Fermi levels are almost not influenced by the S/Se ratio. In contrast, for Cu-poor compounds, a significant change in the chemical surface composition is witnessed compared to that of the bulk. Moreover, the absorption capability is enhanced without modification of the optical gap. The Cu off-stoichiometry influences also notably the positioning of Fermi level into the band gap. These features could be at the origin for the singular performances of the Cu poor CZTSSe-based solar cell.
- Published
- 2021
18. Using electrochemistry coupled to high resolution mass spectrometry for the simulation of the environmental degradation of the recalcitrant fungicide carbendazim
- Author
-
Ugo Bussy, Christine Thobie-Gautier, Mohammed Boujtita, Dimitri Alvarez-Dorta, Ranil Clément Tonleu Temgoua, Julie Hémez, Nicolas Galland, Ignas Kenfack Tonle, Catalysis, ORganometallic chemistry And synthesIs of Ligands ( CORAIL), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Quinone imine ,Context (language use) ,Nitrenium ion ,02 engineering and technology ,Mass spectrometry ,01 natural sciences ,Analytical Chemistry ,Hydroxylation ,chemistry.chemical_compound ,Hydrolysis ,MESH: Benzimidazoles Carbamates Electrochemistry Fungicides, Industrial* Mass Spectrometry Oxidation-Reduction ,Electrochemistry ,[CHIM]Chemical Sciences ,Carbendazim ,010401 analytical chemistry ,15. Life on land ,021001 nanoscience & nanotechnology ,Combinatorial chemistry ,Fungicides, Industrial ,0104 chemical sciences ,Quinone ,Electrochemical oxidation ,chemistry ,13. Climate action ,Degradation (geology) ,Benzimidazoles ,Carbamates ,0210 nano-technology ,Oxidation-Reduction - Abstract
International audience; Currently, there is a growing interest in the study of environmental degradation pathways of organic contaminants such as pesticides, with the objective to better understand their potential risk for environmental systems and living organisms. In this context, DFT (conceptual density functional theory) and predictive methods may systematically be used to simplify and accelerate the elucidation of environmental degradation. We report herein the electrochemical behavior/degradation of the carbendazim (CBZ) fungicide widely used to treat cereal and fruit crops. Oxidative degradation of CBZ was studied using an electrochemical flow-through cell directly coupled to a mass spectrometer for rapid identification of CBZ degradation products. The structural elucidation of CBZ oxidation products was based on retention time, accurate mass, isotopic distribution and fragmentation pattern by using LC-HRMS an LC-HRMS2. The most important chemical reactions found to occur in the transformation of CBZ were hydrolysis and hydroxylation. EC-LC-MS and EC-MS analysis has made it possible to highlight the identification of degradation products of CBZ. In addition to previously known transformation products common to those observed during environmental degradation (monocarbomethoxyguanidine, benzimidazole-isocyanate, 2-aminobenzimidazole, hydroxy-2-aminobenzimidazole, hydroxycarbendazim, CBZ-CBZ dimer), two new degradation products were identified in this work: a quinone imine and a nitrenium ion. Electrochemistry mass spectrometry hyphenated techniques represent an accessible, rapid and reliable tool to elucidate the oxidative degradation of CBZ, including reactive degradation products and conjugates.
- Published
- 2021
19. Simulation of the environmental degradation of diuron (herbicide) using electrochemistry coupled to high resolution mass spectrometry
- Author
-
Ugo Bussy, Nicolas Galland, Ranil Clément Tonleu Temgoua, Dimitri Alvarez-Dorta, Ignas Kenfack Tonle, Julie Hémez, Mohammed Boujtita, Ingénierie des Matériaux Fonctionnels (IMF), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
General Chemical Engineering ,Reactive intermediate ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,Mass spectrometry ,01 natural sciences ,0104 chemical sciences ,Quinone ,Hydroxylation ,chemistry.chemical_compound ,Hydrolysis ,Mass voltammetry ,chemistry ,Diuron Quinone imines Electrochemical oxidation ,Computational chemistry ,[CHIM]Chemical Sciences ,Dehydrogenation ,0210 nano-technology ,Quantitative analysis (chemistry) ,[CHIM.RADIO]Chemical Sciences/Radiochemistry - Abstract
International audience; The environmental degradation of contaminants such as pesticides can hinder the ability of analytical instruments, even high-performance system such as mass spectrometry, to detect and quantify contamination reliably. There is thus a need for developing synthetic approaches that allow the fast identification of contaminants markers that can be later support quantitative analysis. Combining electrochemical cell (EC), liquid chromatography (LC) and electrospray mass spectrometry (MS) (online EC-MS and offline EC-LC-MS) allows the rapid identification of some oxidation products of diuron (DIU) in the absence and in the presence of glutathione. The structural elucidation of DIU oxidation products was based on retention time, m/z ratio in positive mode and fragmentation pattern. Reactions such as hydrolytic dechlorination, hydroxylation, dehydrochlorination, dehydrogenation/hydrogenation, conjugation and dimerization have been successfully mimicked serving applications such as drug metabolism and environmental degradation simulation. The resort to electrochemistry to simulate naturally occurring reaction has been of particular interest for the production of reactive intermediate species. In this study, quinone imines, highly electrophilic chemical intermediates, have been identified as transformation products during the oxidative metabolism of diuron for the first time. The obtained results, supported by theoretical calculations, are useful for predicting and understanding the oxidative DIU degradation pathway.
- Published
- 2020
20. Synthesis of p‐type N‐doped TiO 2 thin films by co‐reactive magnetron sputtering
- Author
-
Jonathan Dervaux, Mohammed Boujtita, Adriano Panepinto, Pierre-Antoine Cormier, Fabrice Odobel, Rony Snyders, Laboratoire de Chimie des interactions plasma surface (CHIPS), Université de Mons (UMons), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Reactive magnetron ,Materials science ,Polymers and Plastics ,business.industry ,Doping ,Analytical chemistry ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Semiconductor ,Sputtering ,Thin film ,0210 nano-technology ,business - Abstract
International audience; Tandem dye‐sensitized solar cell devices (t‐DSSCs) are a potential alternative to Si‐based solar cells as autonomous power sources. Nevertheless, their further development suffers from the poor quality of the p‐type material, that is, NiO. In this study, N‐doped TiO2 thin films exhibiting a p‐type conductivity (p‐TiO2:N) are successfully grown by co‐reactive magnetron sputtering. Its p‐type conductivity is correlated to the incorporation of N atoms in substitutional positions which is controllable by carefully tuning the ratio between O2 and N2 reactive gases during the growth of the material. Furthermore, it reveals a three to six times higher mobility of the carriers (1.5–3.1 cm2·V−1·s−1) than sputtered NiO. These results are in particular interest for the development of new TiO2‐based t‐DSSCs.
- Published
- 2020
21. Cu2O@CuO core-shell nanoparticles as photocathode for p-type dye sensitized solar cell
- Author
-
Martine Bujoli-Doeuff, Fabrice Odobel, Yoann Farré, Yann Pellegrin, Eric Gautron, Mohammed Boujtita, Tengfei Jiang, Stéphane Jobic, and Laurent Cario
- Subjects
Materials science ,Mechanical Engineering ,Metals and Alloys ,Nanoparticle ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Photocathode ,0104 chemical sciences ,Dielectric spectroscopy ,Dye-sensitized solar cell ,X-ray photoelectron spectroscopy ,Chemical engineering ,chemistry ,Mechanics of Materials ,Screen printing ,Materials Chemistry ,0210 nano-technology ,High-resolution transmission electron microscopy ,Cobalt - Abstract
Cu2O@CuO core-shell nanoparticles were synthesized via a facile precipitation-thermal oxidation method consisting in the preparation of Cu2O nanoparticles in solution followed by a post-treatment at 300 °C, 350 °C or 400 °C in air. From HRTEM micrographs, it was evidenced that Cu2O particles were uniformly covered by a 5 nm thick CuO layer to form a core-shell structure. This shell may be viewed as a passivating layer that overcomes the natural chemical instability of Cu2O towards electrolytes for instance. The as-obtained Cu2O@CuO nanoparticles were characterized by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. Both techniques concluded to the p-type conductivity of the Cu2O@CuO hetero-structures. These nanoparticles were then deposited as a film on a FTO glass by screen printing and used after sintering as photocathodes for p-DSSCs. Photovoltaic activity was confirmed with DPP-NDI dye as sensitizer and tris(4,4′-ditert-butyl-2,2′-bipyridine)cobalt(III/II) as redox mediator.
- Published
- 2018
22. Synthesis and properties of novel pyranylidene-based organic sensitizers for dye-sensitized solar cells
- Author
-
Patricia Guevara Level, Aurélien Planchat, Fabrice Odobel, Mohammed Boujtita, Laurianne Wojcik, Nicolas Le Poul, Sébastien Gauthier, Denis Jacquemin, Yann Pellegrin, Françoise Robin-le Guen, Nadine Szuwarski, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Chimie, Electrochimie Moléculaires et Chimie Analytique (CEMCA), Université de Brest (UBO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,General Chemical Engineering ,Substituent ,chemistry.chemical_element ,Electron donor ,Photovoltaic performance ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,Electrochemistry ,Dye-sensitized solar cells ,01 natural sciences ,7. Clean energy ,chemistry.chemical_compound ,Substituent effect ,Moiety ,Organic sensitizers ,[CHIM]Chemical Sciences ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Process Chemistry and Technology ,Energy conversion efficiency ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Dye-sensitized solar cell ,chemistry ,Density functional theory ,0210 nano-technology ,TD-DFT ,Carbon - Abstract
International audience; We report herein the synthesis of nine new molecularly engineered metal-free organic pyranylidene-based dyes as efficient photosensitizers for Dye-Sensitized Solar Cells (DSSCs). Their photophysical, electrochemical, and photovoltaic properties were investigated, and their excited states have been modelled using Time-Dependent Density Functional Theory (TD-DFT). The investigation of the photovoltaic performances of this series of new dyes provided structure-property relationships where their Power Conversion Efficiencies (PCE) could be correlated to structural features, such as the length of the π-conjugated spacer and the nature of the substituents on the upper (positions 2 and 6) and lower parts (substituents on the exocyclic carbon) of the pyranylidene electron donor moiety. While these dyes fulfilled the criteria of efficient sensitizers for TiO2-based DSSCs, their photovoltaic performances were found to depend on the dye packing arrangements controlled by substituents on the pyranylidene group. The highest Power Conversion Efficiency of 5.52% was reached with the 20a dye containing phenyl substituent groups in both upper and lower parts of the pyranylidene fragment and with one thienyl π-conjugated spacer. © 2019 Elsevier Ltd
- Published
- 2019
23. Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle
- Author
-
Rony Snyders, Eric Gautron, Pierre-Antoine Cormier, Mohammed Boujtita, Yann Pellegrin, Nadine Szuwarski, Fabrice Odobel, Jonathan Dervaux, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie inorganique (LCI), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Chimie des Interactions Plasma-Surface (ChIPS) (ChIPS), and Université de Mons-Hainaut
- Subjects
Anatase ,Materials science ,business.industry ,Open-circuit voltage ,Recrystallization (metallurgy) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Dye-sensitized solar cell ,General Energy ,Sputtering ,Optoelectronics ,Physical and Theoretical Chemistry ,Thin film ,0210 nano-technology ,business ,Mesoporous material ,Short circuit ,ComputingMilieux_MISCELLANEOUS - Abstract
The control of the surface area enhancement and the ordering of the mesoporous photoanode is one of the key parameters to overcome the current limits of performance of dye sensitized solar cells (DSSCs). These parameters are expected to improve both the concentration of adsorbed dye molecules on the photoanode and the charge collection. In this paper, reactive magnetron sputtering at glancing angle is employed to synthesize nanostructured TiO2 thin films. A post-annealing treatment under an ambient atmosphere at 773 K allows recrystallization of the films to form individual single crystal-like anatase nanocolumns, as shown on a reference structure constituted by well-separated slanted nanocolumns. Even if the best cells provide an open circuit voltage of 0.8 V, a fill factor of 77%, and a short circuit current density of 4.6 mA/cm2 (JSC) and permit to reach an overall efficiency up to 2.6%, it does not yet reach the performances of the reference TiO2 nanoparticle (NP)-based cell. This is explained by a po...
- Published
- 2018
24. Titanium vanadium nitride electrode for micro-supercapacitors
- Author
-
L. Le Brizoual, M. A. Djouadi, Ali Arman, Amine Achour, M. A. Soussou, Raúl Lucio-Porto, Mohammed Boujtita, Thierry Brousse, Mohamed Chaker, Azin Ahmadpourian, Institut National de la Recherche Scientifique [Québec] (INRS), Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autonoma de Nuevo Leon [Mexique] (UANL), Department of Physics, Islamic Azad University, Kermanshah, Centre de Recherches et des Technologies de l'Energie (CRTEn), LMTE, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Nantes Université (NU)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)
- Subjects
Atomic ratio ,Materials science ,Bins ,Refractory metal compounds ,Thin films ,Vanadium nitride ,Electrolyte solutions ,Transition metal nitrides ,Inorganic chemistry ,Capacitance ,chemistry.chemical_element ,Vanadium ,02 engineering and technology ,Titanium nitride ,Nitride ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Nitrides ,Volumetric capacity ,lcsh:Chemistry ,Electrolytes ,chemistry.chemical_compound ,Transition metal ,Electrochemistry ,Cycling stability ,Electrodes ,Titanium ,Supercapacitor ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Cosputtering ,Transition metals ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Vanadium nitrides ,0104 chemical sciences ,Micro supercapacitors ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,chemistry ,Chemical engineering ,0210 nano-technology ,lcsh:TP250-261 - Abstract
Here we report on the synthesis of binary transition metal nitride electrodes based on titanium vanadium nitride (TiVN) thin films. These films were deposited by a method compatible with micro-electronic processes which consists of DC co-sputtering of vanadium (V) and titanium (Ti) targets. TiVN films with different Ti/V ratio were deposited. A dependence of the capacitance and the cycling stability with the Ti/V atomic ratio in the films was established. While V rich sample exhibits a Faradic behavior that limits its cycling ability despite a high areal and volumetric capacity, the addition of Ti in the film drastically improves the cycling ability with virtually no fade in capacitance after 10,000 cycles. Furthermore, a 1.1 Ti/V ratio leads to an areal capacitance up to 15 mF·cm−2 in 1 M KOH electrolyte solution. Such electrodes shed light on the use of binary transition metal nitrides as candidate electrodes for micro-supercapacitor. Keywords: Micro-supercapacitors, Transition metal nitride, Titanium nitride, Vanadium nitride
- Published
- 2017
25. Hybrid Azo-fluorophore Organic Nanoparticles as Emissive Turn-on Probes for Cellular Endocytosis
- Author
-
Joanna Boucard, Thibaut Blondy, Tina Briolay, Mohammed Boujtita, Steven Nedellec, Philippe Hulin, Christophe Blanquart, Marc Grégoire, Eléna Ishow, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Immunogenic Cell Death and Mesothelioma Therapy (CRCINA-ÉQUIPE 4), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Structure fédérative de recherche François Bonamy (SFR François Bonamy), Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Santé de l'Université de Nantes (IRS-UN), Bernardo, Elizabeth, Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)
- Subjects
azo dyes ,Fluorophore ,Materials science ,Nanoparticle ,Endocytosis Pathway ,Electrons ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,02 engineering and technology ,Endosomes ,010402 general chemistry ,Endocytosis ,01 natural sciences ,7. Clean energy ,Photoinduced electron transfer ,nanoparticle endocytosis ,photoinduced electron transfer ,chemistry.chemical_compound ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Cell Line, Tumor ,Thiadiazoles ,Humans ,General Materials Science ,Organic Chemicals ,Fluorescent Dyes ,Exergonic reaction ,bioimaging probes ,021001 nanoscience & nanotechnology ,Fluorescence ,0104 chemical sciences ,Förster resonance energy transfer ,chemistry ,Molecular Probes ,organic nanoparticles ,Biophysics ,Nanoparticles ,fluorescence ,0210 nano-technology ,Azo Compounds - Abstract
International audience; The development of fluorescent organic nanoparticles, serving as bioimaging agents or drug cargos, represents a buoyant field of investigations. Nevertheless, their ulterior fate and structural integrity after cell uptake remain elusive. Toward this aim, we have elaborated original photoactive organic nanoparticles (d TEM ∼ 35−50 nm wide) with an off−on signal upon cellular internalization. Such nanoparticles are based on the noncovalent association of red-emitting benzothiadiazole (BDZ) derivatives and azo dyes, acting as fluorescence quenchers. Upon varying the azo/BDZ ratio, we found that quantitative emission quenching could be obtained with only a 0.2:1 azo/BDZ ratio and originated from exergonic oxidative and reductive photoinduced electron transfer from the azo units (Δ el G 0 = −0.21 and −0.29 eV, respectively). Such results revisited the origin of emission quenching, often confusedly ascribed to Forster resonance energy transfer. A nonlinear and sharp drop of the emission intensity with the increase in the azo unit density n was observed and presents comparable evolution to a n −1/3 mathematical law. Thorough biological examinations involving cancer cells prove a receptor-independent endocytosis pathway, leading to progressive cell lighting upon nanoparticle accumulation in the late endosomal/lysosomal compartments. Complete emission recovery of the initially quenched azo/BDZ nanosystems could be achieved by using mefloquine, which caused endosomal/lysosomal disruption, and release of their content in the cytoplasm. Such results demonstrate that the dotlike emission from endosomes actually stems from fully dissociated individual dyes and not integer nanoparticles. They conclude on the high spatial confinement promoted by organelles and finally question its severe impact on functional compounds or nanoparticles whose properties are strongly distance dependent.
- Published
- 2019
26. Solar electricity and fuel production with perylene monoimide dye-sensitised TiO2 in water
- Author
-
Mohammed Boujtita, Yann Pellegrin, Julien Warnan, Janina Willkomm, Yoann Farré, Erwin Reisner, Fabrice Odobel, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Department of Chemistry [Cambridge, UK], University of Cambridge [UK] (CAM), Boujtita, Mohammed [0000-0001-5604-3294], Odobel, Fabrice [0000-0001-7289-4160], Reisner, Erwin [0000-0002-7781-1616], and Apollo - University of Cambridge Repository
- Subjects
chemistry.chemical_classification ,Aqueous solution ,Materials science ,34 Chemical Sciences ,Acetylacetone ,Carboxylic acid ,Electron donor ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Solar fuel ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,3406 Physical Chemistry ,Photocatalysis ,[CHIM]Chemical Sciences ,7 Affordable and Clean Energy ,0210 nano-technology ,Perylene - Abstract
Dye-sensitisation of TiO2 and other metal oxides is an established strategy to couple solar light harvesting with efficient charge separation for the production of electricity in dye-sensitised solar cells (DSCs) or fuels in dye-sensitised semiconductor photocatalysis (DSP). Perylene monoimide (PMI) dyes have emerged as promising organic dyes, but they have not previously been used in a functional assembly with TiO2 in aqueous solution. Here, five novel PMI dyes bearing carboxylic acid, phosphonic acid, acetylacetone, hydroxyquinoline or dipicolinic acid anchoring groups for attachment onto TiO2 are reported. We identified functional DSC and DSP systems with PMI-sensitised TiO2 in aqueous solution, which permitted a side-by-side comparison with respect to performance between the two systems. Structure-activity relationships allowed us to suggest anchor-condition-system associations to suit specific anchoring groups at various pH values, and with different electron mediators (redox couple or sacrificial electron donor) and catalysts in DSC and DSP schemes. A DSC sensitised with the hydroxyquinoline-modified PMI dye reached the highest short-circuit current density (J(SC) approximate to 1.4 mA cm(-2)) in aqueous electrolyte solution during irradiation with simulated solar light. This dye also achieved a turnover number (TONPMI) of approximately 4900 for sacrificial proton reduction after 24 h irradiation in a DSP scheme with Pt as a H-2-evolving co-catalyst at pH 4.5. This performance was only surpassed by the carboxylic acid-bearing dye, which reached a new benchmark turnover number (TONPMI approximate to 1.1 x 10(4) after 72 h) for an organic dye in nanoparticulate DSP for solar fuel production. At higher pH (8.5), our results showed that the phosphonic acid group allows for higher performance due to a stronger anchoring ability. This study provides a platform for aqueous PMI dye-sensitised TiO2 chemistry and gives valuable insights into the performance of different anchoring groups in DSC and DSP systems.
- Published
- 2019
27. Second Generation of Diketopyrrolopyrrole Dyes for NiO-Based Dye-Sensitized Solar Cells
- Author
-
Lei Zhang, Errol Blart, Yoann Farré, Mohammed Boujtita, Denis Jacquemin, Leif Hammarström, Yann Pellegrin, Fabrice Odobel, and Aurélien Planchat
- Subjects
Materials science ,Non-blocking I/O ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Triphenylamine ,Photochemistry ,Electrochemistry ,7. Clean energy ,01 natural sciences ,Acceptor ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Dye-sensitized solar cell ,Electron transfer ,General Energy ,chemistry ,Physical and Theoretical Chemistry ,Triiodide ,0210 nano-technology ,Spectroscopy - Abstract
In this study, four new diketopyrrolopyrrole (DPP) sensitizers, with a dicarboxylated triphenylamine anchoring group for attachment to NiO, were prepared and their electronic absorption, emission and electrochemical properties were recorded. The nature of the electronic excited-states was also modeled with Time-Dependent Density Functional Theory (TD-DFT) quantum chemistry calculations. The photovoltaic performances of these new dyes were characterized in NiO-based dye-sensitized solar cells (DSCs) with the classical iodide/triiodide and cobalt(II/III)–polypyridine electrolytes, in which they proved to be quite active. Laser spectroscopy on dye/NiO/electrolyte films gave evidence for ultrafast hole injection into NiO (0.2–10 ps time scales). For the dyes with an appended naphtalenediimide (NDI) acceptor unit, ultrafast electron transfer to the NDI dramatically prolonged the lifetime of the charge separated state NiO+/dye–, from the ps time scale to an average lifetime ≈0.25 ms, which is among the slowest ...
- Published
- 2016
28. Electrochemically Promoted Tyrosine-Click-Chemistry for Protein Labeling
- Author
-
Christine Thobie-Gautier, David Deniaud, Sébastien G. Gouin, Mikaël Croyal, Mohammed Bouzelha, Dimitri Alvarez-Dorta, Mohammed Boujtita, Mathieu Mével, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Nutrition périnatale [Nantes] (Centres de Recherche en Nutrition Humaine - CRNH), Centre de Recherche en Nutrition Humaine - Ouest, Laboratoire de Thérapie Génique Translationnelle des Maladies Génétiques (Inserm UMR 1089), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes (UN), Laboratoire de Synthèse Organique (Hétérochimie organique, organoéléments et matériaux) (LSOHOOM), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut National de la Recherche Agronomique (INRA)-Université de Nantes (UN), Institut National de la Santé et de la Recherche Médicale (INSERM), ProdInra, Migration, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Université de Nantes (UN)-Institut National de la Recherche Agronomique (INRA)
- Subjects
[CHIM.THER] Chemical Sciences/Medicinal Chemistry ,[SDV]Life Sciences [q-bio] ,Chemical biology ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,Glucose Oxidase ,Colloid and Surface Chemistry ,Animals ,Humans ,Glucose oxidase ,Amino Acid Sequence ,Tyrosine ,Bovine serum albumin ,Peptide sequence ,chemistry.chemical_classification ,Bioconjugation ,biology ,010405 organic chemistry ,Chemistry ,Triazines ,Proteins ,General Chemistry ,Electrochemical Techniques ,Combinatorial chemistry ,0104 chemical sciences ,Amino acid ,Molecular Probes ,biology.protein ,Click chemistry ,Cattle ,Click Chemistry ,Aspergillus niger - Abstract
International audience; The development of new bio-orthogonal ligation methods for the conjugation of native proteins is of particular importance in the field of chemical biology and biotherapies. In this work, we developed a traceless electrochemical method for protein bioconjugation. The electrochemically promoted tyrosine-click (e-Y-CLICK) allowed the chemoselective Y-modification of peptides and proteins with labeled urazoles. A low potential is applied in an electrochemical cell to activate urazole anchors in situ and on demand, without affecting the electroactive amino acids from the protein. The versatility of the electrosynthetic approach was shown on biologically relevant peptides and proteins such as oxytocin, angiotensin 2, serum bovine albumin, and epratuzumab. The fully conserved enzymatic activity of a glucose oxidase observed after e-Y-CLICK further highlights the softness of the method. The e-Y-CLICK protocols were successfully performed in pure aqueous buffers, without the need for co-solvents, scavenger or oxidizing chemicals, and should therefore significantly broaden the scope of bioconjugation.
- Published
- 2018
29. Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles
- Author
-
Mohammed Boujtita, Sofia Javed, Amine Achour, Mohammad Islam, Khalid Saeed, Mohamed Abdou Djouadi, Discipline of Computer Science, Faculty of Science and Technology, Queensland University of Technology [Brisbane] (QUT), Université de Namur [Namur] (UNamur), AGH University of Science and Technology [Krakow, PL] (AGH UST), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,chemistry.chemical_element ,Nanoparticle ,02 engineering and technology ,Chemical vapor deposition ,Carbon nanotube ,010402 general chemistry ,01 natural sciences ,lcsh:Technology ,Article ,law.invention ,chemistry.chemical_compound ,cobalt nanoparticles ,carbon nanotubes ,Nafion membranes ,nanocomposite films ,electrochemical process ,AFM ,X-ray photoelectron spectroscopy ,Plasma-enhanced chemical vapor deposition ,law ,Nafion ,General Materials Science ,lcsh:Microscopy ,ComputingMilieux_MISCELLANEOUS ,lcsh:QC120-168.85 ,lcsh:QH201-278.5 ,lcsh:T ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Chemical engineering ,lcsh:TA1-2040 ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,lcsh:Descriptive and experimental mechanics ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,0210 nano-technology ,lcsh:Engineering (General). Civil engineering (General) ,Carbon ,Cobalt ,lcsh:TK1-9971 - Abstract
In this work, we report development of hybrid nanostructures of metal nanoparticles (NP) and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC) processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT). The X-ray photoelectron spectroscope (XPS) and atomic force microscope (AFM) studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM), reduction time (5, 20 s), and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution) depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (
- Published
- 2018
30. Electrochemistry-mass spectrometry to study reactive drug metabolites and CYP450 simulations
- Author
-
Mohammed Boujtita, Christine Thobie-Gautier, Ugo Bussy, and Renaud Boisseau
- Subjects
biology ,Aryl ,Cytochrome P450 ,Nitroso ,Mass spectrometry ,Electrochemistry ,Combinatorial chemistry ,Analytical Chemistry ,Matrix (chemical analysis) ,chemistry.chemical_compound ,chemistry ,Electrophile ,biology.protein ,Organic chemistry ,Spectroscopy ,Drug metabolism - Abstract
The use of electrochemistry (EC) coupled to mass spectrometry (MS) has been widely reported in the past two decades as a tool for simulating drug metabolism. EC-MS is now used to generate metabolites in a simple matrix with easy implementation for high-throughput analysis. Another interesting use of EC in drug-metabolism investigation is simulation of the formation of reactive drug metabolites. Electrochemical reactions tend to be limited to the simulation of single-electron transfers initiated by cytochrome P450 reactions, hence the need for new analytical developments. This review aims to describe current knowledge of the use of EC-MS for the generation and the identification of reactive drug metabolites. We detail the electrochemical formation of electrophilic aryl, nitroso, aromatics and nitrogen-oxide species in the first part. We give future perspectives related to the surface-modified electrode coupled with MS for inhibition.
- Published
- 2015
31. Unexpected benzimidazole ring formation from a quinoneimide species in the presence of ammonium acetate as supporting electrolyte used in the coupling of electrochemistry with mass spectrometry
- Author
-
Ugo Bussy, Renaud Boisseau, Nicolas Galland, Denis Jacquemin, Ulrik Jurva, Moa Andresen-Bergström, Mohammed Boujtita, and Virginie Silvestre
- Subjects
Benzimidazole ,Supporting electrolyte ,Electrospray ionization ,Organic Chemistry ,Inorganic chemistry ,Side reaction ,Lithium acetate ,Mass spectrometry ,Electrochemistry ,Analytical Chemistry ,chemistry.chemical_compound ,chemistry ,Organic chemistry ,Ammonium acetate ,Spectroscopy - Abstract
Rationale Electrochemistry (EC) coupled to mass spectrometry (MS) has been used to study different phase-I reactions. Despite of the versatility of EC/MS, the effect of the nature of the supporting electrolyte on the formation of oxidation products has seldom been discussed during EC/MS experiments. Here, we present a comparison of two different supporting electrolytes and their effect on the identification of unstable intermediate oxidation species is discussed. Methods The oxidation of acebutolol was performed with a coulometric cell in the presence of two supporting electrolytes namely ammonium acetate and lithium acetate. Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS) using a binary gradient (water/acetonitrile) with positive electrospray ionization was used to identify the oxidation products in the presence and absence of glutathione. Chemical structure elucidations of the oxidation products were performed by high-resolution mass spectrometry (HRMS) and were also supported by nuclear magnetic resonance (NMR) measurements. Results From the electrochemical study and HRMS measurements, we demonstrate that the quinoneimide species resulting from the oxidative hydrolyses of acebutolol gives a benzimidazole ring product in the presence of ammonium acetate. Through the example of the oxidation of acebutolol, a correlation between the supporting electrolyte nature and oxidation product formation was established. The obtained results were supported by quantum mechanical calculations. Conclusions We present here evidence of the side reactions induced by the presence of ammonia as supporting electrolyte during EC/MS measurements. Acebutolol was used as a model to postulate an uncommon and unexpected side reaction leading to benzimidazole ring formation. The findings may help to understand the identification of the intermediate species in the oxidative degradation process. Copyright © 2015 John Wiley & Sons, Ltd.
- Published
- 2015
32. The first dye-sensitized solar cell with p-type LaOCuS nanoparticles as a photocathode
- Author
-
Laurent Cario, Errol Blart, Mohammed Boujtita, Adèle Renaud, Fabrice Odobel, Yann Pellegrin, Stéphane Jobic, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,business.industry ,General Chemical Engineering ,Non-blocking I/O ,Wide-bandgap semiconductor ,Nanoparticle ,Nanotechnology ,General Chemistry ,7. Clean energy ,Transparent electronics ,Photocathode ,Dye-sensitized solar cell ,Semiconductor ,[CHIM]Chemical Sciences ,Optoelectronics ,business - Abstract
Layered LaOCuS oxysulfide is a well-known wide band gap p-type semiconductor that has attracted strong interests for transparent electronics. We report here that nanoparticles of this material can also be used as a substitute for the widely used NiO compound to fabricate photocathodes for p-type dye sensitized solar cells.
- Published
- 2015
33. Nanocarbon thin films, plasma functionnalization and process development of MOSFET biosensors
- Author
-
Eva Kovacevic, Cédric Pattyn, Hussain, S., Johannes Berndt, Chantal Boulmer-Leborgne, Arnaud Stolz, Nadjib Semmar, Olivier Aubry, Abdel-Aziz El Mel, Laetitia Donero, Laurent Le Brizoual, France Le Bihan, Olivier de Sagazan, Brice Le Borgne, Valerie Quesniaux, Mohammed Boujtita, Pierre-Yves Tessier, Groupe de recherches sur l'énergétique des milieux ionisés (GREMI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Immunologie et Embryologie Moléculaires (IEM), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Nantes Université (NU)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2017
34. Engineering Processes at the Interface of p-Semiconductor for Enhancing the Open Circuit Voltage in p-Type Dye-Sensitized Solar Cells
- Author
-
Yann Pellegrin, Stéphane Jobic, Ludovic Favereau, Errol Blart, Fabrice Odobel, Guy Louarn, Adèle Renaud, Mohammed Boujtita, Laurent Cario, Lionel Hirsch, Aurélien Planchat, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de physique des interactions ondes matières (LPIOM), Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Communication de centre, Institut National de la Recherche Agronomique (INRA), ANR-12-PRGE-0016-01, Agence Nationale de la Recherche, CM1202, European Cooperation in Science and Technology, Région des Pays de la Loire, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-ENSCPB-Centre National de la Recherche Scientifique (CNRS), and Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Spin coating ,Materials science ,Passivation ,Renewable Energy, Sustainability and the Environment ,Open-circuit voltage ,Non-blocking I/O ,Inorganic chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Electrolyte ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Dielectric spectroscopy ,Dye-sensitized solar cell ,Coating ,Chemical engineering ,engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; To prevent the interfacial charge recombination between injected holes in the valence band and the redox mediator in the electrolyte in p-type dye sensitized solar cells (p-DSSC) the passivation of the recombination sites by organic insulator chenodeoxycholic acid (CDCA) layer is critically investigated in this study. Rather than classical coating of the semiconductor's surface by simultaneous co-adsorption of CDCA during the dyeing step, two other methods were investigated. The first consists in dissolving CDCA in the electrolyte, while the second consists in spin coating an ethanol solution of CDCA onto the already dyed photocathode. In 2 this study different sensitizers, electrolytes and p-SCs, (NiO, CuGaO2) were explored. Analysis of the current/voltage curves and electrochemical impedance spectroscopy provides evidence that the role of the CDCA layer is to create a physical barrier to prevent the approach of the redox mediator from the NiO surface and consequently raise the Voc. The important finding of this study is the demonstration that the Voc in p-DSSC is heavily limited by interfacial charge recombination and that higher Voc values much above 100 mV and as high as 500 mV can be attained with conventional materials (NiO) if this deleterious side reaction can be suppressed or diminished.
- Published
- 2017
35. Experimental and theoretical evidences of p-type conductivity in nickel carbodiimide nanoparticles with a delafossite structure type
- Author
-
Yoann Farré, Franck Tessier, Stéphane Jobic, Camille Latouche, Fabrice Odobel, Tengfei Jiang, Mohammed Boujtita, Laurent Cario, Baptiste Polteau, François Cheviré, Yann Pellegrin, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), School of Chemistry and Chemical Engineering, Yangzhou University, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), ANR-12-PRGE-0016-01, Agence Nationale de la Recherche, Centre National de la Recherche Scientifique, Université de Rennes 1, Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-12-PRGE-0016,POSITIF,Cellules solaires à colorant par sensibilisation d'oxydes semi-conducteurs de type p pour la fabrication de cellules tandem(2012)
- Subjects
Chemistry ,Rietveld refinement ,Non-blocking I/O ,chemistry.chemical_element ,Mineralogy ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,engineering.material ,Conductivity ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Dielectric spectroscopy ,Inorganic Chemistry ,Nickel ,Delafossite ,Specific surface area ,engineering ,Physical chemistry ,Physical and Theoretical Chemistry ,0210 nano-technology ,Electronic band structure - Abstract
International audience; Nickel carbodiimide (NiCN) was synthesized using a two-step precipitation-decomposition route leading to a brown powder with gypsum-flower-like morphology and a large specific surface area (75 m/g). This layered material crystallizes in the 2H structure type of delafossite (space group P6/mmc), which is built upon infinite /[NiN] layers connected by linear carbodiimide ([N═C═N]) bridges. An X-ray diffraction Rietveld refinement and thermal analyses pointed out some nickel deficiencies in the material, and band structure calculations carried out on the defect compound predicted p-type conductivity in relation to a slight amount of N. This p-type conductivity was demonstrated by electrochemical impedance spectroscopy measurements, and a flat band potential of 0.90 V vs SCE at pH 9.4 was measured. This value, which is more positive than those of CuGaO and CuCrO delafossite oxides and NiO, prompted us to test NiCN nanoparticles as a photocathode in p-type dye-sensitized solar cells.
- Published
- 2017
36. Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation
- Author
-
Ifor D. W. Samuel, Muhammad T. Sajjad, Mohammed Boujtita, Fabrice Odobel, Yann Pellegrin, Mahfoudh Raïssi, Thomas Roland, Stéphane Jobic, Arvydas Ruseckas, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), University of Saint Andrews, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), EPSRC, European Research Council, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. Condensed Matter Physics
- Subjects
Materials science ,TK ,02 engineering and technology ,Electron ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Photoinduced electron transfer ,TK Electrical engineering. Electronics Nuclear engineering ,General Materials Science ,SDG 7 - Affordable and Clean Energy ,QC ,ComputingMilieux_MISCELLANEOUS ,Quenching (fluorescence) ,business.industry ,Non-blocking I/O ,DAS ,021001 nanoscience & nanotechnology ,Nanocrystalline material ,0104 chemical sciences ,QC Physics ,Semiconductor ,Quantum dot ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Time-resolved spectroscopy ,0210 nano-technology ,business - Abstract
ANR is gratefully acknowledged for the financial support of these researches through the QuePhelec project (n° ANR-13-BS10-0011-01). Région des Pays de la Loire and Nantes University for the project LUMOMAT are also acknowledged. We acknowledge support from the European Research Council (grant number 321305) and the EPSRC (grant number EP/L017008/1). IDWS is a Royal Society Wolfson Research Merit award holder. The research data supporting this publication can be accessed at http://dx.doi.org/10.17630/ddaebfb9-e127-43cb-9048-966a572b50ac. Quantum dots (QDs) are very attractive materials for solar cells due to their high absorption coefficients, size dependence and easy tunability of their optical and electronic properties due to quantum confinement. Particularly interesting are the PbS QDs owing to their broad spectral absorption until the long wavelengths, their easy processability and low cost. Here, we used control of the PbS QDs size to understand charge transfer processes at the interfaces of NiO semiconductor and explain the optimal QDs size in photovoltaic devices. Towards this goal, we have synthesized a series of PbS QDs with different diameters (2.8 A until 4A) and investigated charge transfer dynamics by time resolved spectroscopy and their ability to act as sensitizers in nanocrystalline NiO based solar cells using the cobalt tris(4,4'-diterbutyl-2,2'-bipyridine) complex as redox mediator. We found that PbS QDs with average diameter of 3.0 nm are optimal size in terms of efficient charge transfers and light harvesting efficiency for photovoltaic performances. Our study showed that an hole injection from PbS QDs to NiO valence band (VB) is an efficient process even with low injection driving force (0.3 eV) and occurs in 6-10 ns. Furthermore we found that the direct electrolyte reduction (photoinduced electron transfer to the cobalt redox mediator) also occurs in parallel to the hole injection with rate constant of similar magnitude (10-20 ns). In spite of its large driving force, the rate constant of the oxidative quenching of PbS by Co(III) diminishes more steeply than hole injection on NiO when the diameter of PbS increases. This is understood as the consequence of increasing the trap states that limit electron shift. We believe that our detailed findings will advance the future design of QD sensitized photocathodes. Postprint
- Published
- 2017
37. Synthesis and Characterization of a Stable Copper(I) Complex for Radiopharmaceutical Applications
- Author
-
Sébastien G. Gouin, David Deniaud, Eric Renault, Karine Julienne, Jonathan Hamon, Ewen Bodio, Mohammed Boujtita, and Patricia Le Saëc
- Subjects
Bioconjugation ,X-ray photoelectron spectroscopy ,Chemistry ,Ligand ,Inorganic chemistry ,chemistry.chemical_element ,Chelation ,General Chemistry ,Electrochemistry ,Spectroscopy ,Copper ,Redox - Abstract
A highly stable copper(I) complex was obtained starting from a copper(II) salt. This compound was characterized by a combination of several analytical techniques (UV/Vis spectroscopy, energy-dispersive X-ray spectroscopy, electrochemistry, and X-ray photoelectron spectroscopy) and was shown to present an N4Cu structure. These results were confirmed by a density functional calculations study of the binding energy and the electronic structure of model ligand and copper complexes. Preliminary tests of complexation showed a high ability of the corresponding ligand to chelate 64Cu in very diluted medium, which is of interest for developing new positron emission tomography imaging agents. The stability and the kinetic inertness of the complex are promising. In particular, it displayed good redox stability, which is important because in vivo reduction or oxidation of the copper of Cu complexes can lead to demetalation. The rapid microwave-assisted strategy used to synthesize the ligand was applied to the synthesis of more than ten ligands. One of these was functionalized by an amino group to form a bifunctional chelate for a future bioconjugation for applications in nuclear medicine.
- Published
- 2014
38. Ultra-thin films on transparent conductor oxides for the development of spectro-electrochemical transducers
- Author
-
Christine Thobie-Gautier, E. Grigore, Cyril Delacôte, Pierre-Yves Tessier, Mohammed Boujtita, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), National Institute for Laser, Plasma and Radiation Physics (INFLPR), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,General Physics and Astronomy ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,01 natural sciences ,X-ray photoelectron spectroscopy ,Sputtering ,Thin film ,Transparent conducting film ,business.industry ,Transparent films ,Surfaces and Interfaces ,General Chemistry ,Sputter deposition ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Surfaces, Coatings and Films ,Indium tin oxide ,Electrochemical transducer ,Electrode ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Charge transfer resistance ,0210 nano-technology ,business ,Magnetron sputtering - Abstract
International audience; Transparent C, Au and Pt films with thickness in the 5-10 nm range have been deposited by a DC magnetron sputtering system on commercial ITO (indium tin oxide) coated glass substrate for evaluation as electrode of spectro-electrochemical transducer. The transmission, over the investigated spectral range, is superior to 55% with the best transmission values obtained for C films (higher than 80%). The deposited films have been characterized by AFM, XPS and electrochemical methods. Results showed a low roughness, improved in comparison with uncoated electrodes. Electrochemical properties of the Au and Pt films evidenced a metallic behavior, which allowed qualifying them as conductive optically transparent electrodes for spectro-electrochemical devices.
- Published
- 2013
39. Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry
- Author
-
Marcel Delaforge, Ugo Bussy, Denis Jacquemin, Chaimaâ El-Bekkali, Nicolas Galland, Mohammed Boujtita, Illa Tea, Michel Krempf, and Véronique Ferchaud-Roucher
- Subjects
Hydroxylation ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Biochemistry ,Acebutolol ,Catalysis ,Mass Spectrometry ,Analytical Chemistry ,chemistry.chemical_compound ,Cytochrome P-450 Enzyme System ,Biotransformation ,medicine ,Animals ,Organic chemistry ,Alprenolol ,Alkyl ,chemistry.chemical_classification ,Chromatography ,biology ,010401 analytical chemistry ,Cytochrome P450 ,Electrochemical Techniques ,Models, Theoretical ,Rats ,0104 chemical sciences ,chemistry ,Dealkylation ,Microsomes, Liver ,biology.protein ,Oxidation-Reduction ,Chromatography, Liquid ,medicine.drug - Abstract
A comparative study of the electrochemical conversion and the biotransformation performed by the cytochrome P450 (CYP450) obtained by rat liver microsomes has been achieved to elucidate the oxidation mechanism of both acebutolol and alprenolol. For this purpose, a wide range of reactions such as N-dealkylation, O-dealkoxylation, aromatic hydroxylation, benzyl hydroxylation, alkyl hydroxylation, and aromatic hydroxylation have been examined in this study, and their mechanisms have been compared. Most of the results of the electrochemical oxidation have been found to be in accordance with those obtained by incubating acebutolol and alprenolol in the presence of CYP450, i.e., N-dealkylation, benzyl hydroxylation, and O-dealkoxylation reactions catalyzed by liver microsomes were found to be predicted by the electrochemical oxidation. The difficulty for the electrochemical process to mimic both aromatic and alkyl hydroxylation reactions has also been discussed, and the hypothesis for the absence of aromatic hydroxylated and alkyl hydroxylated products, respectively, for alprenolol and acebutolol, under the anodic oxidation has been supported by theoretical calculation. The present study highlights the potential and limitation of coupling of electrochemistry-liquid chromatography-high-resolution mass spectrometry for the study of phase I and phase II reactions of acebutolol and alprenolol.
- Published
- 2013
40. In situ NMR spectroelectrochemistry for the structure elucidation of unstable intermediate metabolites
- Author
-
Serge Akoka, Ugo Bussy, Véronique Ferchaud-Roucher, Titouan Jaunet-Lahary, Michel Krempf, Mohammed Boujtita, Patrick Giraudeau, Illa Tea, and Virginie Silvestre
- Subjects
In situ ,Magnetic Resonance Spectroscopy ,Molecular Structure ,Imine ,Reactive intermediate ,Phenacetin ,Nuclear magnetic resonance spectroscopy ,Analgesics, Non-Narcotic ,Biochemistry ,Analytical Chemistry ,Quinone ,chemistry.chemical_compound ,Drug Stability ,chemistry ,Computational chemistry ,Proton NMR ,Organic chemistry ,Molecule ,Oxidation-Reduction ,Two-dimensional nuclear magnetic resonance spectroscopy - Abstract
In situ NMR spectroelectrochemistry is presented in this study as a useful hybrid technique for the chemical structure elucidation of unstable intermediate species. An experimental setting was designed to follow the reaction in real time during the experimental electrochemical process. The analysis of (1)H NMR spectra recorded in situ permitted us (1) to elucidate the reaction pathway of the electrochemical oxidation of phenacetin and (2) to reveal the quinone imine as a reactive intermediate species without using any trapping reaction. Phenacetin has been considered as hepatotoxic at high therapeutic amounts, which is why it was chosen as a model to prove the applicability of the analytical method. The use of 1D and 2D NMR experiments led to the elucidation of the major species produced from the oxidation process. We demonstrated that in situ NMR spectroelectrochemistry constitutes a fast way for monitoring unstable quinone imines and elucidating their chemical structures.
- Published
- 2013
41. Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and Micro-Raman spectroscopy study
- Author
-
Gheorghe Dinescu, Amine Achour, Mohammed Boujtita, Sorin Vizireanu, L. Le Brizoual, M. A. Djouadi, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), National Institute for Laser, Plasma and Radiation Physics (INFLPR), Petroleum-Gas (Petroleum-Gas), University of Ploiesti, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Inorganic chemistry ,CNW ,Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Electron spectroscopy ,Pyridinic/pyridonic nitrogen ,symbols.namesake ,X-ray photoelectron spectroscopy ,Polarization (electrochemistry) ,X-ray photoelectron spectroscopy (XPS) ,Surfaces and Interfaces ,General Chemistry ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Nitrogen ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electrochemical oxidation ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,symbols ,Electrochemical capacitance ,Carbon doped nitrogen ,0210 nano-technology ,Raman spectroscopy - Abstract
International audience; Unintentional nitrogen doped carbon nanowall (CNW) films were oxidized through anodic polarization in different applied potential windows, in a mild neutral K2SO4 electrolyte solution. Applied potentials in the range of [0-1], [0-1.5] and [0-2] V vs. SCE were explored. The films were characterized with X-ray photoelectron (XPS) and Micro-Raman spectroscopy, in order to investigate the surface chemistry and structural changes after treatment, respectively. The XPS analysis revealed that this electrochemical treatment leads to an increase of oxygen functional groups, and influences the nitrogen proportion and bonding configuration (such as pyridinic/pyridonic nitrogen) on the film surface at room temperature. In particular, an obvious enhancement of pyrrolic/pyridonic nitrogen doping of CNWs via electrochemical cycling in the range of [0-1.5] and [0-2] V vs. SCE was achieved. Such enhancement happened, because of the oxidation of nitrogen atoms in pyridine as a result of OH ions injection upon electrochemical cycling. Micro-Raman analysis indicates structural quality degradation with increasing the applied potential window. Moreover, the electrochemical capacitance of CNW films was increased after treatment in the range of [0-1] and [0-1.5] and decreased in the range of [0-2] V vs. SCE. The results show that harsh oxidation happened in the range [0-2] V.
- Published
- 2013
42. Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot
- Author
-
Yann Pellegrin, Fabrice Odobel, Stéphane Jobic, Mohammed Boujtita, Mahfoudh Raïssi, RF-ELITE : RF-Electronique Imprimée pour les Télécommunications et l'Energie (XLIM-RFEI), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Multidisciplinary ,Materials science ,business.industry ,Non-blocking I/O ,Photovoltaic system ,02 engineering and technology ,Quantum dot solar cell ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Solar fuel ,01 natural sciences ,7. Clean energy ,Article ,Photocathode ,0104 chemical sciences ,law.invention ,Quantum dot ,law ,Solar cell ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Photocatalysis ,Optoelectronics ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Sensitized NiO based photocathode is a new field of investigation with increasing scientific interest in relation with the development of tandem dye-sensitized solar cells (photovoltaic) and dye-sensitized photoelectrosynthetic cells (solar fuel). We demonstrate herein that PbS quantum dots (QDs) represent promising inorganic sensitizers for NiO-based quantum dot-sensitized solar cells (QDSSCs). The solar cell sensitized with PbS quantum dot exhibits significantly higher photoconversion efficiency than solar cells sensitized with a classical and efficient molecular sensitizer (P1 dye = 4-(Bis-{4-[5-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl}-amino)-benzoic acid). Furthermore, the system features an IPCE (Incident Photon-to-Current Efficiency) spectrum that spreads into the infra-red region, reaching operating wavelengths of 950 nm. The QDSSC photoelectrochemical device works with the complexes tris(4,4′-ditert-butyl-2,2′-bipyridine)cobalt(III/II) redox mediators, underscoring the formation of a long-lived charge-separated state. The electrochemical impedance spectrocopy measurements are consistent with a high packing of the QDs upon the NiO surface, the high density of which limits the access of the electrolyte and results in favorable light absorption cross-sections and a significant hole lifetime. These notable results highlight the potential of NiO-based photocathodes sensitized with quantum dots for accessing and exploiting the low-energy part of the solar spectrum in photovoltaic and photocatalysis applications.
- Published
- 2016
43. Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning
- Author
-
Ke Du, P. Y. Tessier, Cyril Delacôte, Damien Thiry, Chang-Hwan Choi, Michael Duerrschnabel, Leopoldo Molina-Luna, Junjun Ding, Adrien Chauvin, Abdel-Aziz El Mel, Mohammed Boujtita, École nationale supérieure d'architecture de Nantes (ENSA Nantes), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Department of Material- and Geosciences, Darmstadt, Technische Universität Darmstadt (TU Darmstadt), Chimie des Interactions Plasma-Surface (ChIPS) (ChIPS), Université de Mons-Hainaut, Stevens Institute of Technology [Hoboken], Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Laboratoire de Chimie des interactions plasma surface (CHIPS), and Université de Mons (UMons)
- Subjects
Nanostructure ,Materials science ,Silicon ,Nanoporous ,Nanowires ,Nanowire ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,Substrate (electronics) ,Electrochemical Techniques ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry ,Macroscopic scale ,Cavity magnetron ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Gold ,0210 nano-technology ,Porosity ,ComputingMilieux_MISCELLANEOUS - Abstract
Nanoporous materials are of great interest for various technological applications including sensors based on surface-enhanced Raman scattering, catalysis, and biotechnology. Currently, tremendous efforts are dedicated to the development of porous one-dimensional materials to improve the properties of such class of materials. The main drawback of the synthesis approaches reported so far includes (i) the short length of the porous nanowires, which cannot reach the macroscopic scale, and (ii) the poor organization of the nanostructures obtained by the end of the synthesis process. In this work, we report for the first time on a two-step approach allowing creating highly ordered porous gold nanowire arrays with a length up to a few centimeters. This two-step approach consists of the growth of gold/copper alloy nanowires by magnetron cosputtering on a nanograted silicon substrate, serving as a physical template, followed by a selective dissolution of copper by an electrochemical anodic process in diluted sulfuric acid. We demonstrate that the pore size of the nanowires can be tailored between 6 and 21 nm by tuning the dealloying voltage between 0.2 and 0.4 V and the dealloying time within the range of 150-600 s. We further show that the initial gold content (11 to 26 atom %) and the diameter of the gold/copper alloy nanowires (135 to 250 nm) are two important parameters that must carefully be selected to precisely control the porosity of the material.
- Published
- 2016
44. Low-cost composites based on porous titania-apatite surfaces for the removal of patent blue V from water: Effect of chemical structure of dye
- Author
-
A. Laghzizil, S. Saoiabi, C. El Bekkali, Mohammed Boujtita, M. El Karbane, A. Saoiabi, A. Rami, H. Bouyarmane, Laboratoire de Chimie physique Générale, Université Mohammed V de Rabat [Agdal], Laboratoire National de Contrôle des Médicaments, Rabat, Morocco, Université Mohammed V, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Anatase ,Materials science ,Kinetic modeling ,Inorganic chemistry ,02 engineering and technology ,Apatite/titania ,010501 environmental sciences ,01 natural sciences ,chemistry.chemical_compound ,Degradation ,Adsorption ,Specific surface area ,[CHIM]Chemical Sciences ,Photocatalysis ,General ,lcsh:Science (General) ,Photodegradation ,Dissolution ,0105 earth and related environmental sciences ,ComputingMethodologies_COMPUTERGRAPHICS ,lcsh:R5-920 ,Multidisciplinary ,Nanocomposite ,Patent blue ,021001 nanoscience & nanotechnology ,chemistry ,Chemical engineering ,Titanium dioxide ,Original Article ,lcsh:Medicine (General) ,0210 nano-technology ,lcsh:Q1-390 - Abstract
Graphical abstract, Hydroxyapatite/titania nanocomposites (TiHAp) were synthesized from a mixture of a titanium alkoxide solution and dissolution products of a Moroccan natural phosphate. The simultaneous gelation and precipitation processes occurring at room temperature led to the formation of TiHAp nanocomposites. X-ray diffraction results indicated that hydroxyapatite and anatase (TiO2) were the major crystalline phases. The specific surface area of the nanocomposites increased with the TiO2 content. Resulting TiHAp powders were assessed for the removal of the patent blue V dye from water. Kinetic experiments suggested that a sequence of adsorption and photodegradation is responsible for discoloration of dye solutions. These results suggest that such hydroxyapatite/titania nanocomposites constitute attractive low-cost materials for the removal of dyes from industrial textile effluent.
- Published
- 2016
45. Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores
- Author
-
Junjun Ding, B. Angleraud, Pierre-Yves Tessier, Adrien Chauvin, Abdel-Aziz El Mel, Chang-Hwan Choi, Mohammed Boujtita, Cyril Delacôte, École nationale supérieure d'architecture de Nantes (ENSA Nantes), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Stevens Institute of Technology [Hoboken], Laboratoire de Chimie des interactions plasma surface (CHIPS), and Université de Mons (UMons)
- Subjects
Fabrication ,Materials science ,Alloy ,Nanowire ,General Physics and Astronomy ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,Substrate (electronics) ,Surface finish ,engineering.material ,010402 general chemistry ,hillocks ,lcsh:Chemical technology ,01 natural sciences ,lcsh:Technology ,Full Research Paper ,General Materials Science ,lcsh:TP1-1185 ,Electrical and Electronic Engineering ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,lcsh:T ,Metallurgy ,technology, industry, and agriculture ,nanoporous ,gold ,021001 nanoscience & nanotechnology ,Copper ,lcsh:QC1-999 ,0104 chemical sciences ,Nanoscience ,Nanopore ,chemistry ,copper ,engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,lcsh:Q ,0210 nano-technology ,lcsh:Physics ,Hillock ,dealloying - Abstract
We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold–copper and gold–silver. We demonstrate that applying an electrochemical dealloying process to the gold–copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors.
- Published
- 2016
46. CuO nanomaterials for p-type dye-sensitized solar cells
- Author
-
Eric Gautron, Martine Bujoli-Doeuff, Mohammed Boujtita, Yann Pellegrin, Laurent Cario, Yoann Farré, Stéphane Jobic, Fabrice Odobel, Tengfei Jiang, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,General Chemical Engineering ,Non-blocking I/O ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,Molar absorptivity ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Nanomaterials ,chemistry.chemical_compound ,Bipyridine ,Dye-sensitized solar cell ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Triiodide ,0210 nano-technology ,Absorption (electromagnetic radiation) ,Cobalt ,ComputingMilieux_MISCELLANEOUS - Abstract
In p-type dye-sensitized solar cells (p-DSSCs), NiO is the most commonly used p-type semiconductor. Nevertheless, because of the drawbacks of NiO, much effort has been made to search for suitable substitutes. Herein, three different morphologies of CuO nanomaterials were used to prepare photocathodes for p-DSSCs, which have a deeper valence band and a higher dielectric constant compared to that of NiO. We observe that CuO is unstable in the presence of iodide/triiodide electrolyte, while cobalt complexes with bipyridine ligands are more suitable redox shuttles. We also note that the average transport time in CuO is shorter than that in NiO. Finally, the deep absorbance of CuO in the visible range indicates that suitable sensitizers for the CuO p-DSSC must exhibit high extinction coefficient and absorption bands located in the lower energy part of the solar spectrum (>600 nm) to be exploitable. In this case such CuO based photocathodes represent valuable systems to exploit the near-infrared (NIR) region.
- Published
- 2016
47. Copper borate as a photocathode in p-type dye-sensitized solar cells
- Author
-
Yoann Farré, Yann Pellegrin, Errol Blart, Tengfei Jiang, Eric Gautron, Laurent Cario, Martine Bujoli-Doeuff, Stéphane Jobic, Mohammed Boujtita, Fabrice Odobel, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Electron mobility ,Tandem ,General Chemical Engineering ,Non-blocking I/O ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,7. Clean energy ,01 natural sciences ,Copper ,Photocathode ,0104 chemical sciences ,Dye-sensitized solar cell ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Boron ,Cobalt ,ComputingMilieux_MISCELLANEOUS - Abstract
p-Type dye-sensitized solar cells (p-DSSCs) have recently become a major research focus because coupling with n-type DSSCs yields highly efficient tandem DSSCs. Indeed many delafossite-like compounds appear as promising candidates for p-DSSCs due to their deep valence band position and high hole mobility. In this paper, the synthesis of CuBO2 was attempted by a facile sol–gel methodology. Then, the as-obtained particles were used to prepare photocathodes for p-DSSCs with DPP-NDI dye as sensitizer and tris(4,4′-di-tert-butyl-2,2′-bipyridine)cobalt(III/II) as redox mediator. Due to the deeper valence band position compared with classical NiO photocathode, the “CuBO2” based p-DSSC presents an open-circuit photovoltage (Voc) of 453 mV, which is 150 mV higher than that of NiO in the same conditions. The results show that “CuBO2” is a potential alternative for NiO in p-DSSCs.
- Published
- 2016
48. Electrochemical oxidation behavior of Acebutolol and identification of intermediate species by liquid chromatography and mass spectrometry
- Author
-
Ugo Bussy, Illa Tea, Michel Krempf, Virginie Silvestre, Véronique Ferchaud-Roucher, and Mohammed Boujtita
- Subjects
Electrospray ,Chromatography ,Chemistry ,General Chemical Engineering ,Reaction intermediate ,Mass spectrometry ,High-performance liquid chromatography ,Acebutolol ,Coulometry ,Liquid chromatography–mass spectrometry ,Electrochemistry ,medicine ,Cyclic voltammetry ,medicine.drug - Abstract
The electrochemical behavior of Acebutolol was examined by cyclic voltammetry and coulometry. The products of Acebutolol oxidation were then characterized by liquid chromatography (LC) and mass spectrometry (MS). An aromatic ether cleavage reaction was observed and various intermediate species were identified. In the presence of glutathione, a series of glutathione adducts were identified enabling possible oxidation pathways of Acebutolol to be established. The obtained results are useful for predicting and understanding the oxidative Acebutolol degradation pathway.
- Published
- 2012
49. Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups
- Author
-
Denis Jacquemin, Mohammed Boujtita, Yann Pellegrin, Nadine Szuwarski, Errol Blart, Fabrice Odobel, Adèle Renaud, Stéphane Jobic, Loïc Le Pleux, Benoit Chavillon, Laurent Cario, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
General Chemical Engineering ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,Electrochemistry ,7. Clean energy ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,law ,Solar cell ,Nickel oxide ,Catechol ,p-Type semiconductor ,Non-blocking I/O ,Dye sensitization ,General Chemistry ,Time-dependent density functional theory ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Ruthenium ,Ruthenium polypyridine complex ,Dye-sensitized solar cell ,chemistry ,Density functional theory ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
International audience; In this contribution, we investigate the photovoltaic performances of four ruthenium trisbipyridine complexes in NiO based dye-sensitized solar cells (DSSC). The four complexes differ by the nature of the anchoring groups, which are either carboxylic acids, biscarbodithioic acids catechol or methyl phosphonic acids. The properties of the dyes were studied by electrochemistry, absorption and emission spectroscopies, surface binding measurements, time-dependent density functional theory (TDDFT) as well as by determining their photoconversion efficiencies in DSSCs under AM 1.5. We show that these simple dyes are relatively efficient sensitizers in NiO-based DSSCs, since some of them give photoconversion efficiencies comparable to that of a standard benchmark dye coumarin C343. We also demonstrate that both catechol and methyl phosphonic acid are promising binding groups for NiO sensitizers to replace classical carboxylic acids in NiO sensitizers and finally we report molecular design rules to elaborate a new generation of better performing ruthenium polypyridine sensitizers.
- Published
- 2011
50. Modified Screen-Printed Carbon Electrodes with Tyrosinase for Determination of Phenolic Compounds in Smoked Food
- Author
-
V. Dragancea, R. Sturza, and Mohammed Boujtita
- Subjects
Chemistry ,gas chromatography ,Process Chemistry and Technology ,Tyrosinase ,chemistry.chemical_element ,General. Including alchemy ,General Chemistry ,biosensor ,screen-printed carbon electrode SPCE ,QD1-65 ,Electrode ,Smoked food ,Environmental Chemistry ,Food science ,QD1-999 ,Carbon - Abstract
A screen-printed carbon electrode modified with tyrosinase (SPCE-Tyr/Paa/Glut) has been developed for the determination of phenol concentration in real samples. The resulting SPCE-Tyr/Paa/Glut was prepared in a one-step procedure, and was then optimized as an amperometric biosensor operating at 0 mV versus Ag/AgCl for phenol determination in flow injection mode. Phenol detection was realized by electrochemical reduction of quinone produced by tyrosinase activity. The possibility of using the developed biosensor to determine phenol concentrations in various smoked products (bacon, ham, chicken and salmon) was also evaluated. Gas chromatography (GC) method was used for result validation obtained in flow injection mode using amperometric biosensor. The result showed good correlation with those obtained by flowinjection analysis (FIA).
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.