1. Distal renal tubular acidosis caused bytryptophan-aspartate repeat domain 72(WDR72) mutations
- Author
-
Choochai Nettuwakul, Nanyawan Rungroj, Pasena A, Sittideth Sangnual, Pa-thai Yenchitsomanus, Nunghathai Sawasdee, Suchai Sritippayawan, Sukachart Kirdpon, Nipaporn Deejai, Misgar Ra, Somkiat Vasuvattakul, and Sookkasem Khositseth
- Subjects
Adult ,Male ,Models, Molecular ,0301 basic medicine ,Adolescent ,Genotype ,Protein Conformation ,DNA Mutational Analysis ,Nonsense mutation ,030232 urology & nephrology ,Tryptophan-Aspartate Repeat ,Biology ,Compound heterozygosity ,Young Adult ,03 medical and health sciences ,0302 clinical medicine ,Protein structure ,Distal renal tubular acidosis ,Exome Sequencing ,Genetics ,Homologous chromosome ,medicine ,Humans ,Genetic Predisposition to Disease ,Amino Acid Sequence ,Child ,Gene ,Genetic Association Studies ,Genetics (clinical) ,Exome sequencing ,Computational Biology ,Proteins ,Acidosis, Renal Tubular ,medicine.disease ,Pedigree ,Phenotype ,030104 developmental biology ,Case-Control Studies ,Mutation ,Female ,Biomarkers - Abstract
Hereditary distal renal tubular acidosis (dRTA) is a rare genetic disease that is caused by mutations in SLC4A1, ATP6V1B1, or ATP6V0A4. However, there are many families with hereditary dRTA in whom the disease-causing genes are unknown. Accordingly, we performed whole exome sequencing and genetic studies of the members of a family with autosomal recessive dRTA of an unknown genetic etiology. Here, we report compound heterozygous pathogenic variations in tryptophan-aspartate repeat domain 72 (WDR72) (c.1777A>G [p.R593G] and c.2522T>A [p.L841Q]) in three affected siblings of a family with dRTA. Both variants segregated with dRTA in the family and were not observed in normal control subjects. Homologous modeling and in silico mutagenesis indicated that R593G and L841Q alter the H-bond formations in the nearby residues, affecting the WDR72 protein structure. All these evidences indicate that the identified WDR72 variations were probably to have caused hereditary dRTA in the reported family. In addition, homozygous nonsense mutation (c.2686C>T [p.R896X]) was identified in another family, strongly supporting the causal role of WDR72 in dRTA. Based on our literature review, WDR72 mutations associated with dRTA have not been previously described. This is the first identification of pathogenic variations in WDR72 as a cause of hereditary dRTA.
- Published
- 2018
- Full Text
- View/download PDF