241 results on '"Mathieu Salanne"'
Search Results
2. Transferring state of health estimation neural networks for different battery chemistries and charging protocols using renormalization and transfer learning
- Author
-
Antonio Rocha Azevedo, David Benhaiem, Jérémie-Luc Sanchez, Kyle Reeves, and Mathieu Salanne
- Subjects
Battery ,State of health ,Neural networks ,Renormalization ,Transfer Learning ,Energy industries. Energy policy. Fuel trade ,HD9502-9502.5 ,Renewable energy sources ,TJ807-830 - Abstract
The State of Health (SOH) is a metric defined for quantifying battery ageing. It is very useful for identifying when a battery has suffered sudden degradation and when it should be replaced. However, accurate estimation of the SOH is not trivial and the use of data-driven approaches such as Neural Networks (NNs) is becoming increasingly common. While promising, these approachs are in principle limited by the fact that new models must be trained for each kind of different batteries, which limit their usability in real-world use case. To address this issue, this work explores two ways of transferring SOH estimation models to batteries with different chemistries and charging protocols than the ones they were trained for: 1. renormalization; and 2. normalization parameter training. We show that updating normalization parameters is sufficient to make models follow SOH evolution, but results usually present an offset and distortion. Optimizing these parameters yields results close to and sometimes better than the reference models, if their protocols are sufficiently similar. Our results lead us to believe that battery chemistry does not influence the model transferring process, but that differences between the training and target datasets’ charging protocols may hinder its success.
- Published
- 2023
- Full Text
- View/download PDF
3. 2023 Roadmap on molecular modelling of electrochemical energy materials
- Author
-
Chao Zhang, Jun Cheng, Yiming Chen, Maria K Y Chan, Qiong Cai, Rodrigo P Carvalho, Cleber F N Marchiori, Daniel Brandell, C Moyses Araujo, Ming Chen, Xiangyu Ji, Guang Feng, Kateryna Goloviznina, Alessandra Serva, Mathieu Salanne, Toshihiko Mandai, Tomooki Hosaka, Mirna Alhanash, Patrik Johansson, Yun-Ze Qiu, Hai Xiao, Michael Eikerling, Ryosuke Jinnouchi, Marko M Melander, Georg Kastlunger, Assil Bouzid, Alfredo Pasquarello, Seung-Jae Shin, Minho M Kim, Hyungjun Kim, Kathleen Schwarz, and Ravishankar Sundararaman
- Subjects
electrochemical interfaces ,density-functional theory ,molecular dynamics simulation ,electrochemical energy storage ,machine learning ,electrocatalysis ,Production of electric energy or power. Powerplants. Central stations ,TK1001-1841 ,Renewable energy sources ,TJ807-830 - Abstract
New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO _2 reduction reaction, and fuel cell applications.
- Published
- 2023
- Full Text
- View/download PDF
4. Study of the Partial Charge Transport Properties in the Molten Alumina via Molecular Dynamics
- Author
-
Aïmen E. Gheribi, Alessandra Serva, Mathieu Salanne, Kelly Machado, Didier Zanghi, Catherine Bessada, and Patrice Chartrand
- Subjects
Chemistry ,QD1-999 - Published
- 2019
- Full Text
- View/download PDF
5. Chasing Aqueous Biphasic Systems from Simple Salts by Exploring the LiTFSI/LiCl/H2O Phase Diagram
- Author
-
Nicolas Dubouis, Chanbum Park, Michaël Deschamps, Soufiane Abdelghani-Idrissi, Matej Kanduč, Annie Colin, Mathieu Salanne, Joachim Dzubiella, Alexis Grimaud, and Benjamin Rotenberg
- Subjects
Chemistry ,QD1-999 - Published
- 2019
- Full Text
- View/download PDF
6. Chemical Decomposition of the TFSI Anion under Aqueous Basic Conditions
- Author
-
Arthur France-Lanord, Fabio Pietrucci, A. Marco Saitta, Jean-Marie Tarascon, Alexis Grimaud, and Mathieu Salanne
- Subjects
Production of electric energy or power. Powerplants. Central stations ,TK1001-1841 ,Renewable energy sources ,TJ807-830 - Abstract
Understanding the interfacial reactivity of aqueous electrolytes is crucial for their use in future batteries. We investigate the reactivity of the bis(trifluoromethane)sulfonimide anion when exposed to a strongly basic medium, by means of ab initio molecular dynamics and enhanced sampling techniques. In particular, we study the nucleophilic attack by the hydroxide anion, which was proposed as a mechanism for the formation of the solid electrolyte interphase at the negative electrode with water-in-salt electrolytes. While in the gas phase we recover a stable gaseous product, namely fluoroform, we observe the formation of trifluoromethanol in strong basic conditions, which then rapidly deprotonates to form CF_{3}O^{−}. This anion was suggested recently as a key compound leading to the formation of a solid electrolyte interphase on an Si-C anode. Such an approach could be leveraged to discover convenient additives leading to the formation of a stable interphase.
- Published
- 2022
- Full Text
- View/download PDF
7. Pressure induced structural transformations in amorphous MgSiO3 and CaSiO3
- Author
-
Philip S. Salmon, Gregory S. Moody, Yoshiki Ishii, Keiron J. Pizzey, Annalisa Polidori, Mathieu Salanne, Anita Zeidler, Michela Buscemi, Henry E. Fischer, Craig L. Bull, Stefan Klotz, Richard Weber, Chris J. Benmore, and Simon G. MacLeod
- Subjects
Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Chemistry ,QD1-999 - Abstract
The pressure-induced structural transformations in metasilicate MSiO3 glass (M = Mg or Ca) on cold-compression from ambient pressure to 17.5 GPa were investigated by neutron diffraction. The structure of the glass recovered to ambient conditions from a pressure of 8.2 or 17.5 GPa was also investigated by neutron or X-ray diffraction. The experimental work was complemented by molecular dynamics simulations using a newly-developed aspherical ion model. The results show network structures based predominantly on corner-sharing tetrahedral SiO4 units. At pressures up to ~8 GPa, there is little change to the network connectivity as described by the Qn speciation, where n denotes the number of bridging oxygen (BO) atoms per SiO4 tetrahedron. On compression of the glass to 17.5 GPa, the Mg–O coordination number increases from 4.5(1) to 6.2(1), and the Ca–O coordination number increases from 6.15(17) to 7.41(7). In both cases, the increased M-O coordination numbers are accompanied by an increased fraction of M-BO versus M-NBO connections, where NBO denotes a non-bridging oxygen atom. The results give the fraction of triple-bridging oxygen atoms as ~0.5% at 17.5 GPa, which does not support the formation of a substantial fraction of oxygen triclusters in either glass. The M-O coordination number of the recovered glass is larger than for the uncompressed material, which originates from an increased fraction of M-BO connections, and increases with the pressure from which the glass is recovered. The results suggest that the measured decrease in viscosity of molten MSiO3 on pressure increasing from ambient to ~8 GPa is not related to a large change in network polymerization, but to the appearance of higher-coordinated M-centred polyhedra that contain a larger fraction of weaker M-BO bonds. Keywords: Glass structure, Pressure, Neutron diffraction, X-ray diffraction, Molecular dynamics
- Published
- 2019
- Full Text
- View/download PDF
8. Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models
- Author
-
Michele Simoncelli, Nidhal Ganfoud, Assane Sene, Matthieu Haefele, Barbara Daffos, Pierre-Louis Taberna, Mathieu Salanne, Patrice Simon, and Benjamin Rotenberg
- Subjects
Physics ,QC1-999 - Abstract
Capacitive mixing (CapMix) and capacitive deionization (CDI) are currently developed as alternatives to membrane-based processes to harvest blue energy—from salinity gradients between river and sea water—and to desalinate water—using charge-discharge cycles of capacitors. Nanoporous electrodes increase the contact area with the electrolyte and hence, in principle, also the performance of the process. However, models to design and optimize devices should be used with caution when the size of the pores becomes comparable to that of ions and water molecules. Here, we address this issue by simulating realistic capacitors based on aqueous electrolytes and nanoporous carbide-derived carbon (CDC) electrodes, accounting for both their complex structure and their polarization by the electrolyte under applied voltage. We compute the capacitance for two salt concentrations and validate our simulations by comparison with cyclic voltammetry experiments. We discuss the predictions of Debye-Hückel and Poisson-Boltzmann theories, as well as modified Donnan models, and we show that the latter can be parametrized using the molecular simulation results at high concentration. This then allows us to extrapolate the capacitance and salt adsorption capacity at lower concentrations, which cannot be simulated, finding a reasonable agreement with the experimental capacitance. We analyze the solvation of ions and their confinement within the electrodes—microscopic properties that are much more difficult to obtain experimentally than the electrochemical response but very important to understand the mechanisms at play. We finally discuss the implications of our findings for CapMix and CDI, both from the modeling point of view and from the use of CDCs in these contexts.
- Published
- 2018
- Full Text
- View/download PDF
9. Data-driven path collective variables.
- Author
-
Arthur France-Lanord, Hadrien Vroylandt, Mathieu Salanne, Benjamin Rotenberg, A. Marco Saitta, and Fabio Pietrucci
- Published
- 2023
- Full Text
- View/download PDF
10. Best Practices for Simulations and Calculations of Nanomaterials for Energy Applications: Avoiding 'Garbage In, Garbage Out'
- Author
-
Mathieu Salanne, Jillian M. Buriak, Xiaodong Chen, William Chueh, Mark C. Hersam, and Raymond E. Schaak
- Subjects
General Engineering ,General Physics and Astronomy ,General Materials Science - Published
- 2023
- Full Text
- View/download PDF
11. Nanostructural Organization in a Biredox Ionic Liquid
- Author
-
Roxanne Berthin, Alessandra Serva, Olivier Fontaine, and Mathieu Salanne
- Subjects
General Materials Science ,Physical and Theoretical Chemistry - Abstract
Ionic liquids generally display peculiar structural features that impact their physical properties, such as the formation of polar and apolar domains. Recently, ionic liquids functionalized with anthraquinone and TEMPO redox groups were shown to increase the energy storage performance of supercapacitors, but their structure was not characterized so far. In this work we use polarizable molecular dynamics to study the nanostructuration of such biredox ionic liquids. We show that TEMPO nitroxyl functions tend to aggregate, while the anthraquinone groups favor stacked arrangements. The latter eventually percolate through the whole liquid, which sheds some light on the mechanisms at play within biredox ionic liquids-based supercapacitors.
- Published
- 2022
- Full Text
- View/download PDF
12. Co-Ion Desorption as the Main Charging Mechanism in Metallic 1T-MoS2 Supercapacitors
- Author
-
Mathieu Salanne and Sheng Bi
- Subjects
General Engineering ,General Physics and Astronomy ,General Materials Science - Abstract
Metallic 1T-MoS2 is a promising electrode material for supercapacitors applications. Its layered structure allows the efficient intercalation of ions, leading to experimental volumetric capacitance as high as 140 F/cm3. Molecular dynamics could in principle be used to characterize its charging mechanism, however, unlike conventional nanoporous carbon, 1T-MoS2 is a multi-component electrode. The Mo and S atoms have very different electronegativities, so that 1T-MoS2 cannot be simulated accurately using the conventional constant potential method. In this work, we show that controlling the electrochemical potential of the atoms allows to recover average partial charges for the elements in agreement with electronic structure calculations for the material at rest, without compromising the ability to simulate systems under an applied voltage. The simulations yield volumetric capacitances in agreement with experiments. We show that due to the large electronegativity of S, the co-ion desorption is the main charging mechanism at play during the charging process. This contrast drastically with carbon materials for which ion exchange and counter-ion adsorption usually dominate. In the future, our method can be extended to the study of a wide range family of 2D layered materials such as MXenes.
- Published
- 2022
- Full Text
- View/download PDF
13. Best Practices for Using AI When Writing Scientific Manuscripts
- Author
-
Jillian M. Buriak, Deji Akinwande, Natalie Artzi, C. Jeffrey Brinker, Cynthia Burrows, Warren C. W. Chan, Chunying Chen, Xiaodong Chen, Manish Chhowalla, Lifeng Chi, William Chueh, Cathleen M. Crudden, Dino Di Carlo, Sharon C. Glotzer, Mark C. Hersam, Dean Ho, Tony Y. Hu, Jiaxing Huang, Ali Javey, Prashant V. Kamat, Il-Doo Kim, Nicholas A. Kotov, T. Randall Lee, Young Hee Lee, Yan Li, Luis M. Liz-Marzán, Paul Mulvaney, Prineha Narang, Peter Nordlander, Rahmi Oklu, Wolfgang J. Parak, Andrey L. Rogach, Mathieu Salanne, Paolo Samorì, Raymond E. Schaak, Kirk S. Schanze, Tsuyoshi Sekitani, Sara Skrabalak, Ajay K. Sood, Ilja K. Voets, Shu Wang, Shutao Wang, Andrew T. S. Wee, Jinhua Ye, ICMS Core, and Self-Organizing Soft Matter
- Subjects
General Engineering ,General Physics and Astronomy ,General Materials Science - Published
- 2023
- Full Text
- View/download PDF
14. Spotting Interface Structuring during Na‐Insertion into the NaSICON Na 3 V 2 (PO 4 ) 3 by EQCM and Operando Fiber Optic Infrared Spectroscopy
- Author
-
Ezzoubair Bendadesse, Charlotte Gervillié‐Mouravieff, Cédric Leau, Kateryna Goloviznina, François Rabuel, Mathieu Salanne, Jean‐Marie Tarascon, and Ozlem Sel
- Subjects
Renewable Energy, Sustainability and the Environment ,General Materials Science - Published
- 2023
- Full Text
- View/download PDF
15. MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems.
- Author
-
Abel Marin-Laflèche, Matthieu Haefele, Laura Scalfi, Alessandro Coretti, Thomas Dufils, Guillaume Jeanmairet, Stewart Reed, Alessandra Serva, Roxanne Berthin, Camille Bacon, Sara Bonella, Benjamin Rotenberg, Paul Madden, and Mathieu Salanne
- Published
- 2020
- Full Text
- View/download PDF
16. Durable Light-Driven pH Switch Enabled by Solvation Environment Tuning of Metastable Photoacids
- Author
-
Anna de Vries, Kateryna Goloviznina, Manuel Reiter, Mathieu Salanne, and Maria R. Lukatskaya
- Abstract
Metastable photoacids (mPAH), such as protonated merocyanine, are organic molecules that release protons under illumination, providing spatiotemporal control of pH. While merocyanine-type photoacids enable fully reversible pH cycling in water, their solubility is limited and chemical stability 350 hours of light-induced pH cycling with 10 times more protons released per cycle in water-DMSO mixtures compared to pure water. This solva-tion engineering approach can be applied to other metastable photoacids, serving as a steppingstone towards practical use in applications where long-term stability is critical.
- Published
- 2023
- Full Text
- View/download PDF
17. Solvent matters: Long-term stability and enhanced solubility of merocyanine photoacids in water-DMSO mixtures
- Author
-
Anna de Vries, Kateryna Goloviznina, Manuel Reiter, Mathieu Salanne, and Maria R. Lukatskaya
- Abstract
Metastable photoacids (mPAH), such as protonated merocyanine, are a unique class of organic molecules that offer spatiotemporal control of pH by reversibly releasing protons under UV-visible light. While merocyanine-type photoacids enable fully reversible pH cycling in water, their solubility and chemical stability are both limited to the range of sub-mM and less than 24 hours, respectively. In recent studies, structure modifications have been the key direction in improving photoacid properties. This work introduces a pathway to improve stability and solubility of photoacids using water-DMSO mixtures. DMSO was selected as co-solvent because, although the pH-switch in DMSO is irreversible, merocyanine is 100 times more soluble and chemically stable. We show that in water-DMSO solvent mixtures, a complete reversibility of pH-jumps can be achieved with at least tenfold increase in chemical stability and solubility. Molecular dynamics simulations with polarizable force fields revealed the crucial role of the photoacid solvation environment in the observed enhancements. This solvation engineering approach to improving solubility and long-term stability of photoacids in water-DMSO mixtures, can be applied to other metastable photoacids.
- Published
- 2023
- Full Text
- View/download PDF
18. On the key role of electrolyte-electrode van der Waals interactions in the simulation of ionic liquids-based supercapacitors
- Author
-
Camille Bacon, Alessandra Serva, Céline Merlet, Patrice Simon, Mathieu Salanne, Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut Universitaire de France (IUF), and Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,General Chemical Engineering ,Electrochemistry ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; The performance of supercapacitors is governed by the structure and dynamics of ions at the solid/liquid interface. At the molecular scale, these properties result from a subtle combination of electrolyte-electrolyte and electrolyte-electrode interactions. Although the former are well captured by conventional force fields, validated against experiments, the latter are much more difficult to parameterize accurately. In this work, by using constant potential classical molecular dynamics, we investigate the effect of the strength of the electrode-electrolyte van der Waals interactions on the interfacial properties for a system composed of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid and a graphite electrode. We show that stronger van der Waals interactions lead to a decrease in the exchange of co-ions by counter-ions with the increase of potential difference and, thus, to a lower capacitance of the devices. The ion exchange dynamics is strongly affected, but the charging rate remains constant over the whole range of studied parameters. This study emphasizes the need for a careful parameterization of force fields for electrode materials in future classical molecular dynamics studies.
- Published
- 2022
- Full Text
- View/download PDF
19. Co-Ion Desorption as the Main Charging Mechanism in Metallic 1T-MoS
- Author
-
Sheng, Bi and Mathieu, Salanne
- Abstract
Metallic 1T-MoS
- Published
- 2022
20. Electrochemical Properties and Local Structure of the TEMPO/TEMPO+ Redox Pair in Ionic Liquids
- Author
-
Kateryna Goloviznina and Mathieu Salanne
- Subjects
Materials Chemistry ,Physical and Theoretical Chemistry ,Surfaces, Coatings and Films - Abstract
Redox-active organic species play an important role in catalysis, energy storage, and biotechnology. One of the representatives is 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical, used as a mediator in organic synthesis and considered a safe alternative to heavy metals. In order to develop a TEMPO-based system with well-controlled electrochemical and catalytic properties, a reaction medium should be carefully chosen. Being highly conductive, stable, and low flammable fluids, ionic liquids (ILs) seem to be promising solvents with easily adjustable physical and solvation properties. In this work, we give an insight into the local structure of ILs around TEMPO and its oxidized form, TEMPO+, underlining striking differences in solvation of these two species. The analysis is coupled with a study of thermodynamics and kinetics of oxidation in the frame of Marcus theory. Our systematic investigation includes imidazolium, pyrrolydinium, and phosphonium families combined with anions of different size, polarity, and flexibility, opting to provide a clear and comprehensive picture of the impact of the nature of IL ions on the behavior of radical/cation redox pair. The obtained results will help to explain experimentally observed effects and to rationalize the design of TEMPO/IL systems.
- Published
- 2022
- Full Text
- View/download PDF
21. Controlling the Hydrophilicity of the Electrochemical Interface to Modulate the Oxygen-Atom Transfer in Electrocatalytic Epoxidation Reactions
- Author
-
Florian Dorchies, Alessandra Serva, Dorian Crevel, Jérémy De Freitas, Nikolaos Kostopoulos, Marc Robert, Ozlem Sel, Mathieu Salanne, Alexis Grimaud, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Laboratoire Analyse, Modélisation et Matériaux pour la Biologie et l'Environnement (LAMBE - UMR 8587), Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire d'Electrochimie Moléculaire (LEM (UMR_7591)), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Colloid and Surface Chemistry ,[SHS.LITT]Humanities and Social Sciences/Literature ,General Chemistry ,Biochemistry ,Catalysis - Abstract
The electrocatalytic epoxidation of alkenes at heterogeneous catalysts using water as the sole oxygen source is a promising safe route toward the sustainable synthesis of epoxides, which are essential building blocks in organic chemistry. However, the physico-chemical parameters governing the oxygen-atom transfer to the alkene and the impact of the electrolyte structure on the epoxidation reaction are yet to be understood. Here, we study the electrocatalytic epoxidation of cyclooctene at the surface of gold in hybrid organic/aqueous mixtures using acetonitrile (ACN) solvent. Gold was selected, as in ACN/water electrolytes gold oxide is formed by reactivity with water at potentials less anodic than the oxygen evolution reaction (OER). This unique property allows us to demonstrate that a sacrificial mechanism is responsible for cyclooctene epoxidation at metallic gold surfaces, proceeding through cyclooctene activation, while epoxidation at gold oxide shares similar reaction intermediates with the OER and proceeds via the activation of water. More importantly, we show that the hydrophilicity of the electrode/electrolyte interface can be tuned by changing the nature of the supporting salt cation, hence affecting the reaction selectivity. At low overpotential, hydrophilic interfaces formed by using strong Lewis acid cations are found to favor gold passivation. Instead, hydrophobic interfaces created by the use of large organic cations favor the oxidation of cyclooctene and the formation of epoxide. Our study directly demonstrates how tuning the hydrophilicity of electrochemical interfaces can improve both the yield and selectivity of anodic reactions at the surface of heterogeneous catalysts.
- Published
- 2022
- Full Text
- View/download PDF
22. Bottom-Up Design of Configurable Oligomer-Derived Conducting Metallopolymers for High-Power Electrochemical Energy Storage
- Author
-
Evgeniya Vorobyeva, Mathieu Salanne, Maria R. Lukatskaya, Franziska Lissel, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Leibniz Association, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Battery (electricity) ,Materials science ,Metal ions in aqueous solution ,Supramolecular chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Oligomer ,Metal ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,conjugated oligomers ,Side chain ,General Materials Science ,Electrical conductor ,supercapacitors ,electrochemical energy storage ,General Engineering ,021001 nanoscience & nanotechnology ,conductive metallopolymers ,0104 chemical sciences ,chemistry ,visual_art ,visual_art.visual_art_medium ,Lithium ,0210 nano-technology - Abstract
International audience; In this Perspective, we sketch out a vision of fast charging and self-healable energy systems that are primarily organic, feature only abundant elements, and operate with ions other than lithium. Using conductive oligomers as highly configurable building blocks, it is possible to create intrinsically adaptable conductive polymeric networks that can be rejuvenated and recycled using simple and safe chemical treatments. Using the versatile organic chemistry toolbox, these oligomers can be further functionalized, for example, with redox-active side chains for high charge storage capacity and ligands capable of complexing metal centers. Cross-linking with metal ions converts the soluble oligomers into insoluble supramolecular networks to yield high-performing electrode materials. The oligomer-based approach can thus provide an exceptional level of control to the design of organic-based battery materials.
- Published
- 2021
- Full Text
- View/download PDF
23. Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces
- Author
-
Alexis Grimaud, Mathieu Salanne, Nicolas Dubouis, Alessandra Serva, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and ANR-19-CE05-0014,BALWISE,Batteries aqueuses au Li utilisant des électrolytes superconcentrés(2019)
- Subjects
[PHYS]Physics [physics] ,Aqueous solution ,010405 organic chemistry ,Chemistry ,Ionic bonding ,General Medicine ,General Chemistry ,Electrolyte ,010402 general chemistry ,01 natural sciences ,Article ,0104 chemical sciences ,Adsorption ,Chemical engineering ,Reactivity (chemistry) - Abstract
International audience; ConspectusThe recent discovery of "water-in-salt" electrolytes has spurred a rebirth of research on aqueous batteries. Most of the attention has been focused on the formulation of salts enabling the electrochemical window to be expanded as much as possible, well beyond the 1.23 V allowed by thermodynamics in water. This approach has led to critical successes, with devices operating at voltages of up to 4 V. These efforts were accompanied by fundamental studies aiming at understanding water speciation and its link with the bulk and interfacial properties of water-in-salt electrolytes. This speciation was found to differ markedly from that in conventional aqueous solutions since most water molecules are involved in the solvation of the cationic species (in general Li+) and thus cannot form their usual hydrogen-bonding network. Instead, it is the anions that tend to self-aggregate in nanodomains and dictate the interfacial and transport properties of the electrolyte. This particular speciation drastically alters the presence and reactivity of the water molecules at electrified interfaces, which enlarges the electrochemical windows of these aqueous electrolytes.Thanks to this fundamental understanding, a second very active lead was recently followed, which consists of using a scarce amount of water in nonaqueous electrolytes in order to control the interfacial properties. Following this path, it was proposed to use an organic solvent such as acetonitrile as a confinement matrix for water. Tuning the salt/water ratio in such systems leads to a whole family of systems that can be used to determine the reactivity of water and control the potential at which the hydrogen evolution reaction occurs. Put together, all of these efforts allow a shift of our view of the water molecule from a passive solvent to a reactant involved in many distinct fields ranging from electrochemical energy storage to (electro)catalysis.Combining spectroscopic and electrochemical techniques with molecular dynamics simulations, we have observed very interesting chemical phenomena such as immiscibility between two aqueous phases, specific adsorption properties of water molecules that strongly affect their reactivity, and complex diffusive mechanisms due to the formation of anionic and aqueous nanodomains.
- Published
- 2021
- Full Text
- View/download PDF
24. Electron Transfer of Functionalised Quinones in Acetonitrile
- Author
-
Tzu-Yao Hsu, Roxanne Berthin, Alessandra Serva, Kyle Reeves, Mathieu Salanne, and Guillaume Jeanmairet
- Abstract
Quinones are redox active organic molecules that have been proposed as an alternative choice to metal-based materials in electrochemical energy storage devices. Functionalization allows to fine tune not only their chemical stability but also the redox potential and the kinetics of the electron transfer reaction. However, reaction rate constant is not solely determined by the redox species but is also impacted by solvent effects. In this work, we show how the functionalization of benzoquinone with different functional groups impacts the solvent reorganization free energies of electron transfer half-reactions in acetonitrile. The use of molecular density functional theory, whose computational cost for studying electron transfer reaction is considerably reduced compared to state-of-the art molecular dynamics simulations, enables to perform a systematic study. We validate the method by comparing the predictions of the solvation shell structure and the free energy profiles for electron transfer reaction to reference classical molecular dynamics simulations in the case of anthraquinone solvated in acetonitrile. We show that all the studied electron transfer half-reactions follow Marcus’ description, regardless of functional groups. Consequently, the solvent reorganization free energy decreases as the molecular size increases.
- Published
- 2022
- Full Text
- View/download PDF
25. Microscopic Simulations of Electrochemical Double-Layer Capacitors
- Author
-
Benjamin Rotenberg, Mathieu Salanne, Guillaume Jeanmairet, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Université de Montpellier (UM)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,General Chemistry ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] - Abstract
International audience; Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/ discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
- Published
- 2022
- Full Text
- View/download PDF
26. First-Principles Determination of Transference Numbers in Cryolitic Melts
- Author
-
Mathieu Salanne, Kelly Machado, Catherine Bessada, Patrice Chartrand, Aĩmen Ernest Gheribi, Didier Zanghi, Polytechnique Montreal, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), and Université d'Orléans (UO)
- Subjects
Materials science ,General Chemical Engineering ,Ionic bonding ,Charge (physics) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,General Chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,Electron transport chain ,Industrial and Manufacturing Engineering ,020401 chemical engineering ,Chemical physics ,0204 chemical engineering ,0210 nano-technology - Abstract
International audience; The charge and electron transport properties of molten ionic systems are among the most relevant properties to consider in the control of several electrochemical processes. First-principles-based equilibrium molecular dynamics (EMD) can provide reliable predictions of both the total and partial charge transport properties. In this work we calculate the charge transport properties of the electrolytic bath (Na 3 AlF 6-AlF 3-Al 2 O 3) of the Hall-Héroult electrolysis cells. We predict both the individual and collective charge transport properties (total, partial conductivity and self diffusion coefficients) for 11 different compositions typical of industrial conditions via a series of EMD simulations. The predicted total and partial ionic conductivities and their composition dependence are compared to available experimental data. A good agreement is obtained for all studied compositions. From a more fundamental point of view, the microscopic aspect of the charge transport properties of cryolitic melts is discussed through its correlation to the local structure of different melts. Deviations between the calculated partial conductivities and those derived via the Nernst-Einstein approximation can be explained by the presence of strong short-range ordering within the melts.
- Published
- 2020
- Full Text
- View/download PDF
27. Competitive Salt Precipitation/Dissolution During Free‐Water Reduction in Water‐in‐Salt Electrolyte
- Author
-
Roza Bouchal, Zhujie Li, Chandra Bongu, Steven Le Vot, Romain Berthelot, Benjamin Rotenberg, Frederic Favier, Stefan A. Freunberger, Mathieu Salanne, and Olivier Fontaine
- Subjects
010405 organic chemistry ,Communication ,salt effect ,electrolytes ,02 engineering and technology ,General Medicine ,021001 nanoscience & nanotechnology ,water-in-salt ,01 natural sciences ,Communications ,6. Clean water ,0104 chemical sciences ,interfaces ,Electrochemistry ,0210 nano-technology - Abstract
Water‐in‐salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Now, two distinct reduction potentials are revealed for the chemical environments of free and bound water and that both contribute to SEI formation. Free water is reduced about 1 V above bound water in a hydrogen evolution reaction (HER) and is responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free‐water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability., Water‐in‐salt electrolytes have received particular attention for their electrochemical stability properties. It is now shown that water reduction is always present from the first measured currents, and that associated with this water reduction, LiTFSI precipitation occurs.
- Published
- 2020
- Full Text
- View/download PDF
28. MetalWalls: Simulating electrochemical interfaces between polarizable electrolytes and metallic electrodes
- Author
-
Alessandro Coretti, Camille Bacon, Roxanne Berthin, Alessandra Serva, Laura Scalfi, Iurii Chubak, Kateryna Goloviznina, Matthieu Haefele, Abel Marin-Laflèche, Benjamin Rotenberg, Sara Bonella, Mathieu Salanne, Centre Européen de Calcul Atomique et Moléculaire (CECAM), École normale supérieure de Lyon (ENS de Lyon)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Universität Wien, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), and European Project: 676629,H2020 Pilier Excellent Science,H2020-EINFRA-2015-1,EoCoE(2015)
- Subjects
ewald summation ,density ,model ,molecular-dynamics ,force-field ,General Physics and Astronomy ,charges ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,origin ,surface ,Physical and Theoretical Chemistry ,[CHIM.OTHE]Chemical Sciences/Other ,temperature ionic liquids ,energy - Abstract
International audience; Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve a wide range of techniques, both experimental and theoretical. Modeling and simulations methods, such as density functional theory or molecular dynamics, provide key information on the structural and dynamic properties of the systems. Of particular importance are polarization effects of the electrode/electrolyte interface, which are difficult to simulate accurately. Here, we show how these electrostatic interactions are taken into account in the framework of the Ewald summation method. We discuss, in particular, the formal setup for calculations that enforce periodic boundary conditions in two directions, a geometry that more closely reflects the characteristics of typical electrolyte/electrode systems and presents some differences with respect to the more common case of periodic boundary conditions in three dimensions. These formal developments are implemented and tested in MetalWalls, a molecular dynamics software that captures the polarization of the electrolyte and allows the simulation of electrodes maintained at a constant potential. We also discuss the technical aspects involved in the calculation of two sets of coupled degrees of freedom, namely the induced dipoles and the electrode charges. We validate the implementation, first on simple systems, then on the well-known interface between graphite electrodes and a room-temperature ionic liquid. We finally illustrate the capabilities of MetalWalls by studying the adsorption of a complex functionalized electrolyte on a graphite electrode.
- Published
- 2022
- Full Text
- View/download PDF
29. Effects of fluoride salt addition to the physico-chemical properties of the MgCl2-NaCl-KCl heat transfer fluid : a molecular dynamics study
- Author
-
Weiguang Zhou, Yanping Zhang, and Mathieu Salanne
- Subjects
Renewable Energy, Sustainability and the Environment ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
Concentrated solar plants are promising solutions for electricity production. In these plants, the heat transfer fluid plays an important role, and finding systems with good thermal properties is very important. In this regard, molten salts, and more particularly molten chlorides, are currently investigated. Experimental studies of these melts are difficult and expensive, so complementing them with simulations would allow to test a wider range of compositions. In this work, we show that classical molecular dynamics simulations are suitable for predicting the properties of a ternary salt composed of MgCl2, KCl and NaCl by extensive comparisons with experimental data (and previous simulations) on the density, heat capacity, viscosity and thermal conductivity. We then study the effect of adding fluoride ions in the melt on these properties in order to investigate the suitability of mixed chlorides-fluorides for future heat transfer fluids studies.
- Published
- 2021
- Full Text
- View/download PDF
30. Metal-Ion Oligomerization Inside Electrified Carbon Micropores and its Effect on Capacitive Charge Storage
- Author
-
Shibo Xi, Zhisheng Lv, Lixiang Zhong, Jiaqi Wei, Xing Li, Shuzhou Li, Caozheng Diao, Mathieu Salanne, Wei Zhang, Xiaodong Chen, Huarong Xia, Yonghua Du, School of Materials Science and Engineering [Singapore], Nanyang Technological University [Singapour], PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), National University of Singapore (NUS), Zhengzhou University, Brookhaven National Laboratory [Upton, NY] (BNL), U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Agency for science, technology and research [Singapore] (A*STAR), School of Materials Science and Engineering, Sorbonne Université, Institute of Materials Research and Engineering, A*STAR, and Innovative Centre for Flexible Devices
- Subjects
Materials science ,ion complex structure ,Ionic bonding ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Capacitance ,Ion ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,Ion Complex Structures ,General Materials Science ,supercapacitor ,ComputingMilieux_MISCELLANEOUS ,Supercapacitor ,Mechanical Engineering ,X-ray absorption spectroscopy ,021001 nanoscience & nanotechnology ,ion solvation ,0104 chemical sciences ,Chemical engineering ,chemistry ,electrochemistry ,Mechanics of Materials ,Ionic liquid ,Chemistry::Physical chemistry::Electrochemistry [Science] ,0210 nano-technology ,Carbon - Abstract
Ion adsorption inside electrified carbon micropores is pivotal for the operation of supercapacitors. Depending on the electrolyte, two main mechanisms have been identified so far, the desolvation of ions in solvents and the formation of superionic states in ionic liquids. Here, it is shown that upon confinement inside negatively charged micropores, transition-metal cations dissolved in water associate to form oligomer species. They are identified using in situ X-ray absorption spectroscopy. The cations associate one with each other via hydroxo bridging, forming ionic oligomers under the synergic effect of spatial confinement and Coulombic screening. The oligomers display sluggish dissociation kinetics and accumulate upon cycling, which leads to supercapacitor capacitance fading. They may be dissolved by applying a positive potential, so an intermittent reverse cycling strategy is proposed to periodically evacuate micropores and revivify the capacitance. These results reveal new insights into ion adsorption and structural evolution with their effects on the electrochemical performance, providing guidelines for designing advanced supercapacitors. Ministry of Education (MOE) National Research Foundation (NRF) Submitted/Accepted version This work was supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE-T2EP10220-0005), Academic Research Fund Tier 1 (Grant No. RG104/18), Singapore National Research Foundation (Nanomaterials for Energy and Water Management CREATE Programme), Energy Innovation Research Programme (EIRP) (Grant No. NRF2015EWT-EIRP002-008), and French National Research Agency (Labex STORE-EX, Grant No. ANR-10-LABX-0076).
- Published
- 2021
- Full Text
- View/download PDF
31. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer
- Author
-
Mahnaz Azimzadeh Sani, Paolo Cignoni, Marie-Pierre Gaigeot, Mathieu Salanne, Julia Linnemann, Kristina Tschulik, Nicholas G. Pavlopoulos, Simone Pezzotti, Alessandra Serva, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire Analyse, Modélisation et Matériaux pour la Biologie et l'Environnement (LAMBE - UMR 8587), and Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
Materials science ,chemistry.chemical_element ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Electrochemistry ,010402 general chemistry ,Capacitance ,7. Clean energy ,01 natural sciences ,Catalysis ,Corrosion ,Metal ,Molecular dynamics ,Adsorption ,ComputingMilieux_MISCELLANEOUS ,General Chemistry ,General Medicine ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,visual_art ,visual_art.visual_art_medium ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Platinum ,0210 nano-technology - Abstract
The electrical double-layer plays a key role in important interfacial electrochemical processes from catalysis to energy stor-age and corrosion. Therefore, understanding its structure is crucial for the progress of sustainable technologies. We extract new physico-chemical information on the capacitance and structure of the electrical double-layer of platinum and gold nanoparticles at the molecular level, employing single nanoparticle electrochemistry. We reveal that the charge storage ability of the solid/liquid interface is larger by one order-of-magnitude than predicted by the traditional mean-field models of the double-layer such as the Gouy-Chapman-Stern-model. Performing Molecular Dynamics simulations, we investigate the possible relationship between the measured high capacitance and adsorption strength of the water adlayer formed at the metal surface. These insights may launch the active tuning of solid-solvent and solvent-solvent interactions as innovative design strategy to transform energy technologies towards superior performance and sustainability.
- Published
- 2021
- Full Text
- View/download PDF
32. Tanks and Truth
- Author
-
Nicholas A. Kotov, Deji Akinwande, C. Jeffrey Brinker, Jillian M. Buriak, Warren C. W. Chan, Xiaodong Chen, Manish Chhowalla, William Chueh, Sharon C. Glotzer, Yury Gogotsi, Mark C. Hersam, Dean Ho, Tony Hu, Ali Javey, Cherie R. Kagan, Kazunori Kataoka, Il-Doo Kim, Shuit-Tong Lee, Young Hee Lee, Luis M. Liz-Marzán, Jill E. Millstone, Paul Mulvaney, Andre E. Nel, Peter Nordlander, Wolfgang J. Parak, Reginald M. Penner, Andrey L. Rogach, Mathieu Salanne, Raymond E. Schaak, Ajay K. Sood, Molly Stevens, Vladimir Tsukruk, Andrew T. S. Wee, Ilja Voets, Tanja Weil, and Paul S. Weiss
- Subjects
General Engineering ,General Physics and Astronomy ,General Materials Science - Published
- 2022
- Full Text
- View/download PDF
33. Transport Properties of Li-TFSI Water-in-Salt Electrolytes
- Author
-
Benjamin Rotenberg, Anne-Laure Rollet, Olivier Fontaine, Oleg Borodin, Roza Bouchal, Frédéric Favier, Zhujie Li, Cécile Rizzi, Trinidad Méndez-Morales, S. Le Vot, and Mathieu Salanne
- Subjects
Aqueous solution ,Materials science ,010304 chemical physics ,Force field (physics) ,Ionic bonding ,chemistry.chemical_element ,Electrolyte ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Ion ,Molecular dynamics ,chemistry.chemical_compound ,chemistry ,Chemical physics ,0103 physical sciences ,Ionic liquid ,Materials Chemistry ,Lithium ,Physical and Theoretical Chemistry - Abstract
Water-in-salts are a new family of electrolytes that may allow the development of aqueous Li-ion batteries. They have a structure that is reminiscent of ionic liquids, and they are characterized by a high concentration of ionic species. In this work, we study their transport properties and how they evolve with concentration by using molecular dynamic simulations. We first focus on the choice of the force field. By comparing the simulated viscosities and self-diffusion coefficients with experimental measurements, we select a set of parameters that reproduces well the transport properties. We then use the selected force field to study in detail the variations of the self and collective diffusivities of all the species as well as the transport number of the lithium ion. We show that correlations between ions and water play an important role over the whole concentration range. In the water-in-salt regime, the anions form a percolating network that reduces the cation-anion correlations and leads to rather large values for the transport number compared to other standard electrolytes.
- Published
- 2019
- Full Text
- View/download PDF
34. Molecular Dynamics Simulations of Ether-Modified Phosphonium Ionic Liquid Confined in between Planar and Porous Graphene Electrode Models
- Author
-
Guilherme Ferreira Lemos Pereira, Leonardo J. A. Siqueira, Rafael Guimarães Pereira, and Mathieu Salanne
- Subjects
chemistry.chemical_classification ,Materials science ,Ether ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Molecular dynamics ,General Energy ,chemistry ,Chemical engineering ,Ionic liquid ,Electrode ,Phosphonium ,Physical and Theoretical Chemistry ,0210 nano-technology ,Alkyl - Abstract
Phosphonium-based ionic liquids with short alkyl chains present low viscosity besides their relative high electrochemical stability. These properties make them good candidates for electrolytes of e...
- Published
- 2019
- Full Text
- View/download PDF
35. Solvation of anthraquinone and Tempo redox-active species in acetonitrile using a polarizable force field
- Author
-
Alessandra Serva, Mathieu Salanne, Kyle G. Reeves, Esther Heid, Roxanne Berthin, and Christian Schroeder
- Subjects
chemistry.chemical_compound ,Molecular dynamics ,Chemical physics ,Polarizability ,Chemistry ,Force field (physics) ,Ionic liquid ,Solvation ,Molecule ,Density functional theory ,Acetonitrile ,3. Good health - Abstract
Redox active molecules are of interest in many fields such as medicine, catalysis or energy storage. In particular, in supercapacitor applications, they can be grafted to ionic liquids to form so-called biredox ionic liquids. To completely understand the structural and transport properties of such systems, an insight at the molecular scale is often required but few force fields are developed ad hoc for these molecules. Moreover, they do not include polarization effects, which can lead to inaccurate solvation and dynamical properties. In this work, we developed polarizable force fields for redox-active species anthraquinone (AQ) and 2,2,6,6-tetra-methylpiperidinyl-1-oxyl (TEMPO) in their oxidized and reduced states, as well as for acetonitrile. We validate structural properties of AQ, AQ$^{\bullet-}$, AQ$^{2-}$, TEMPO$^{\bullet}$ and TEMPO$^{+}$ in acetonitrile against density functional theory-based molecular dynamics simulations and we study the solvation of these redox molecules in acetonitrile. This work is a first step toward the characterization of the role played by AQ and TEMPO in electrochemical and catalytic devices.
- Published
- 2021
- Full Text
- View/download PDF
36. Anion Specific Effects Drive the Formation of Li-Salt Based Aqueous Biphasic Systems
- Author
-
Nicolas Dubouis, Arthur France-Lanord, Mathieu Salanne, Alexis Grimaud, Amandine Brige, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), École normale supérieure - Paris (ENS-PSL), and ANR-19-CE05-0014,BALWISE,Batteries aqueuses au Li utilisant des électrolytes superconcentrés(2019)
- Subjects
chemistry.chemical_classification ,[PHYS]Physics [physics] ,Kosmotropic ,Aqueous solution ,010304 chemical physics ,Halide ,Salt (chemistry) ,Polymer ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Chaotropic agent ,chemistry.chemical_compound ,chemistry ,Chemical physics ,0103 physical sciences ,Ionic liquid ,Materials Chemistry ,Physical and Theoretical Chemistry - Abstract
Aqueous biphasic systems (ABS) can form when mixing water with two compounds such as polymers, ionic-liquids or simple salts. While this phenomenon has been known for decades and found applications in various fields such as biology, recycling or even more recently electrochemistry, the physics behind the formation of ABSs remains ill-understood. It was recently demonstrated that ABSs can be composed of two salts sharing the same cation (Li+) but different anions (sulfonamide and halide). Interestingly, their formation could not be explained by the position of the anions within the chaotropic/kosmotropic series and was rather proposed to originate from an anion size mismatch, albeit the size for these anions was never measured yet owing to the lack of a proper experimental methodology. Here, we combine experimental techniques and molecular simulations to assess the specific effects (size, shape, hydrophobic/hydrophilic character) of a series of anions and correlate them with the formation of ABSs. We demonstrate that while the anion size mismatch is a prerequisite for the formation of Li-salts based ABSs, their shape can also play an important role, providing general guidelines for forming new ABSs with potential future applications.
- Published
- 2021
- Full Text
- View/download PDF
37. Effects of Fluoride Salt Addition to the Physico-Chemical Properties of the MgCl 2-NaCl-KCl Heat Transfer Fluid: A Molecular Dynamics Study
- Author
-
Weiguang Zhou, Yanping Zhang, and Mathieu Salanne
- Subjects
History ,Polymers and Plastics ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2021
- Full Text
- View/download PDF
38. Computational Amperometry of Nanoscale Capacitors in Molecular Simulations
- Author
-
Mathieu Salanne, Thomas Dufils, and Michiel Sprik
- Subjects
Condensed Matter - Materials Science ,Materials science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Mechanics ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Capacitance ,Amperometry ,0104 chemical sciences ,law.invention ,Capacitor ,Molecular dynamics ,law ,Electrode ,General Materials Science ,Physical and Theoretical Chemistry ,0210 nano-technology ,Constant (mathematics) ,Electric displacement field ,Intensity (heat transfer) - Abstract
In recent years, constant applied potential molecular dynamics has allowed to study the structure and dynamics of the electrochemical double-layer of a large variety of nanoscale capacitors. Nevertheless it remained impossible to simulate polarized electrodes at fixed total charge. Here we show that combining a constant potential electrode with a finite electric displacement fills this gap by allowing to simulate open circuit conditions. The method can be extended by applying an electric displacement ramp to perform computational amperometry experiments at different current intensities. As in experiments, the full capacitance of the system is obtained at low intensity, but this quantity decreases when the applied ramp becomes too fast with respect to the microscopic dynamics of the liquid., Comment: 17 pages, 7 figures
- Published
- 2021
- Full Text
- View/download PDF
39. Computational Screening of the Physical Properties of Water-in-Salt Electrolytes
- Author
-
Mathieu Salanne, Zhujie Li, Trinidad Méndez-Morales, Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE05-0014,BALWISE,Batteries aqueuses au Li utilisant des électrolytes superconcentrés(2019)
- Subjects
Properties of water ,Materials science ,Energy Engineering and Power Technology ,Salt (chemistry) ,Li-ion batteries ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Viscosity ,superconcentrated electrolytes ,transport properties ,Electrochemistry ,Ionic conductivity ,[CHIM]Chemical Sciences ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Supercapacitor ,chemistry.chemical_classification ,[PHYS]Physics [physics] ,Aqueous solution ,supercapacitors ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Chemical physics ,Ionic liquid ,0210 nano-technology - Abstract
International audience; Water-in-salts form a new family of electrolytes with properties distinct from the ones of conventional aqueous systems and ionic liquids. They are currently investigated for Li-ion batteries and supercapacitors applications, but to date most of the focus was put on the system based on the LiTFSI salt. Here we study the structure and the dynamics of a series of water-in-salts with different anions. They have a similar parent structure but they vary systematically through their symmetric/asymmetric feature and the length of the fluorocarbonated chains. The simulations allow to determine their tendency to nanosegregate, as well as their transport properties (viscosity, ionic conductivity, diffusion coefficients) and the amount of free water, providing useful data for potential applications in energy storage devices.
- Published
- 2020
- Full Text
- View/download PDF
40. Computational Screening of the Physical Properties of Water-in-Salt Electrolytes
- Author
-
Zhujie Li, Trinidad Méndez-Morales, and Mathieu Salanne
- Subjects
chemistry.chemical_classification ,Supercapacitor ,Viscosity ,chemistry.chemical_compound ,Materials science ,Aqueous solution ,Properties of water ,chemistry ,Chemical physics ,Ionic liquid ,Salt (chemistry) ,Ionic conductivity ,Electrolyte - Abstract
Water-in-salts form a new family of electrolytes with properties distinct from the ones of conventional aqueous systems and ionic liquids. They are currently investigated for Li-ion batteries and supercapacitors applications, but to date most of the focus was put on the system based on the LiTFSI salt. Here we study the structure and the dynamics of a series of water-in-salts with different anions. They have a similar parent structure but they vary systematically through their symmetric/asymmetric feature and the length of the fluorocarbonated chains. The simulations allow to determine their tendency to nanosegregate, as well as their transport properties (viscosity, ionic conductivity, diffusion coefficients) and the amount of free water, providing useful data for potential applications in energy storage devices.
- Published
- 2020
- Full Text
- View/download PDF
41. A semiclassical Thomas-Fermi model to tune the metallicity of electrodes in molecular simulations
- Author
-
Kyle G. Reeves, Laura Scalfi, Thomas Dufils, Benjamin Rotenberg, Mathieu Salanne, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Materials science ,Field (physics) ,Condensed matter physics ,Capacitive sensing ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Capacitance ,0104 chemical sciences ,Electrode ,Physical and Theoretical Chemistry ,Perfect conductor ,0210 nano-technology ,Thomas–Fermi model ,Electrical conductor - Abstract
Spurred by the increasing needs in electrochemical energy storage devices, the electrode/electrolyte interface has received a lot of interest in recent years. Molecular dynamics simulations play a proeminent role in this field since they provide a microscopic picture of the mechanisms involved. The current state-of-the-art consists in treating the electrode as a perfect conductor, precluding the possibility to analyze the effect of its metallicity on the interfacial properties. Here we show that the Thomas-Fermi model provides a very convenient framework to account for the screening of the electric field at the interface and differenciating good metals such as gold from imperfect conductors such as graphite. All the interfacial properties are modified by screening within the metal: the capacitance decreases significantly and both the structure and dynamics of the adsorbed electrolyte are affected. The proposed model opens the door for quantitative predictions of the capacitive properties of materials for energy storage., 10 pages, 10 figures (contains the SI)
- Published
- 2020
- Full Text
- View/download PDF
42. Screening the Physical Properties of a Series of Water-in-Salt Electrolytes Using Computer Simulations
- Author
-
Trinidad Mendez-Morales, Zhujie Li, and Mathieu Salanne
- Abstract
Water-in-salts form a new family of electrolytes with properties distinct from the ones of conventional aqueous systems and ionic liquids. They are currently investigated for Li-ion batteries and supercapacitors applications, but to date most of the focus was put on the system based on the LiTFSI salt. Here we study the structure and the dynamics of a series of water-in-salts with different anions. They have a similar parent structure but they vary systematically through their symmetric/asymmetric feature and the length of the fluorocarbonated chains. The simulations allow to determine their tendency to nanosegregate, as well as their transport properties (viscosity, ionic conductivity, diffusion coefficients) and the amount of free water, providing useful data for potential applications in energy storage devices.
- Published
- 2020
- Full Text
- View/download PDF
43. MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems
- Author
-
Sara Bonella, Alessandra Serva, Stewart K. Reed, Alessandro Coretti, Benjamin Rotenberg, Abel Marin-Laflèche, Paul A. Madden, Matthieu Haefele, Thomas Dufils, Guillaume Jeanmairet, Laura Scalfi, Camille Bacon, Roxanne Berthin, Mathieu Salanne, Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Sciences [Torino] (DISMA), Politecnico di Torino = Polytechnic of Turin (Polito), Centre Européen de Calcul Atomique et Moléculaire (CECAM), École normale supérieure de Lyon (ENS de Lyon)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), School of Chemistry [Leeds], University of Leeds, Department of Materials, University of Oxford, École normale supérieure - Lyon (ENS Lyon)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and University of Oxford [Oxford]
- Subjects
Supercapacitor ,[PHYS]Physics [physics] ,Electrode material ,010304 chemical physics ,010405 organic chemistry ,business.industry ,Computer science ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Engineering physics ,7. Clean energy ,6. Clean water ,0104 chemical sciences ,Molecular dynamics ,Software ,0103 physical sciences ,Fuel cells ,0210 nano-technology ,business ,Water desalination - Abstract
International audience; Applied electrochemistry plays a key role in many technologies, such as Li-ion batteries, fuelcells, supercapacitors, solar cells, etc. It is therefore at the core of many research programs allover the world. However, fundamental electrochemical investigations remain scarce. In par-ticular, electrochemistry is among the fields for which the gap between theory and experimentis the largest. From the computational point of view, there is no classical molecular dynamics(MD) software devoted to the simulation of electrochemical systems while other fields such asbiochemistry or material science have dedicated tools.MetalWalls, a MD code dedicated toelectrochemistry, fills this gap. Its main originality is the inclusion of a series of methods whichallow a constant electrical potential to be applied to the electrode materials. It also allowsthe simulation of bulk liquids or solids using the polarizable ion model and the aspherical ionmodel.MetalWallsis designed to be used on high-performance computers and it has alreadybeen employed in a number of scientific publications. It was for example used to study thecharging mechanism of supercapacitors (Merlet et al.,2012), nanoelectrowetting (Choudhuriet al.,2016) and water desalination devices (Simoncelli et al.,2018).
- Published
- 2020
- Full Text
- View/download PDF
44. Tuning the water reduction through controlled nanoconfinement within an organic liquid matrix
- Author
-
Guillaume Jeanmairet, Benjamin Porcheron, Elodie Salager, Mathieu Salanne, Nicolas Dubouis, Alexis Grimaud, Alessandra Serva, Roxanne Berthin, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO)
- Subjects
Nanostructure ,Supporting electrolyte ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,Electrocatalyst ,Electrochemistry ,01 natural sciences ,Biochemistry ,Catalysis ,Dissociation (chemistry) ,Molecule ,Heterogeneous catalysis ,Aqueous solution ,Energy ,Chemistry ,Hydrogen bond ,Process Chemistry and Technology ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,[CHIM.CATA]Chemical Sciences/Catalysis ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Solvent ,Chemical physics ,Water splitting ,0210 nano-technology ,Electrocatalysis - Abstract
The growing hydrogen economy requires accelerating the hydrogen evolution reaction. The water dissociation step (Volmer step) has been proposed as a main kinetic limitation, but the mechanisms at play in the electrochemical double-layer are poorly understood. This is due to the dual role of water: it acts both as a reactant and as a solvent. Here we propose to confine water inside an organic liquid matrix in order to isolate the sole role of water as a reactant. We observed the formation of aqueous-rich nanodomains, whose size can be tuned by changing the supporting electrolyte and found that the reactivity of the system varies significantly with its nanostructure. Depending on the conditions, the reactivity is dominated by either the strength of short-range cation–water interactions or the formation of long chains of water molecules. Understanding this paves the way towards the development of more efficient and selective electrocatalysts for water, CO2, O2 or N2 reduction. Isolating the role of water in aqueous reactions where it is directly involved as a reactant is equally important and challenging. Now, by confining water inside an organic liquid matrix, the authors observe the formation of aqueous-rich nanodomains and find that the reactivity of the system varies with their nanostructure.
- Published
- 2020
- Full Text
- View/download PDF
45. Solvent-Solvent Correlations across Graphene: The Effect of Image Charges
- Author
-
Mathieu Salanne, Neda Ojaghlou, Mahdi Shafiei, Alenka Luzar, and Dusan Bratko
- Subjects
Materials science ,Graphene ,General Engineering ,General Physics and Astronomy ,02 engineering and technology ,Substrate (electronics) ,Conductivity ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Contact angle ,chemistry.chemical_compound ,Molecular dynamics ,chemistry ,Chemical physics ,law ,General Materials Science ,Diiodomethane ,Wetting ,0210 nano-technology ,Polarization (electrochemistry) - Abstract
Wetting experiments show pure graphene to be weakly hydrophilic, but its contact angle (CA) also reflects the character of the supporting material. Measurements and molecular dynamics simulations on suspended and supported graphene often reveal a CA reduction due to the presence of the supporting substrate. A similar reduction is consistently observed when graphene is wetted from both sides. The effect has been attributed to transparency to molecular interactions across the graphene sheet; however, the possibility of substrate-induced graphene polarization has also been considered. Computer simulations of CA on graphene have so far been determined by ignoring the material's conducting properties. We improve the graphene model by incorporating its conductivity according to the constant applied potential molecular dynamics. Using this method, we compare the wettabilities of suspended graphene and graphene supported by water by measuring the CA of cylindrical water drops on the sheets. The inclusion of graphene conductivity and concomitant polarization effects leads to a lower CA on suspended graphene, but the CA reduction is significantly bigger when the sheets are also wetted from the opposite side. The stronger adhesion is accompanied by a profound change in the correlations among water molecules across the sheet. While partial charges on water molecules interacting across an insulator sheet attract charges of the opposite sign, apparent attraction among like charges is manifested across the conducting graphene. The change is associated with graphene polarization, as the image charges inside the conductor attract equally signed partial charges of water molecules on both sides of the sheet. Additionally, using a nonpolar liquid (diiodomethane), we affirm a detectable wetting translucency when liquid-liquid forces are dominated by dispersive interactions. Our findings are important for predictive modeling toward a variety of applications including sensors, fuel cell membranes, water filtration, and graphene-based electrode materials in high-performance supercapacitors.
- Published
- 2020
46. A first-principles investigation of the structural and electrochemical properties of biredox ionic species in acetonitrile
- Author
-
Guillaume Jeanmairet, Kyle G. Reeves, Alessandra Serva, Mathieu Salanne, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
FOS: Physical sciences ,General Physics and Astronomy ,Ionic bonding ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Redox ,Ion ,chemistry.chemical_compound ,Adsorption ,Physics - Chemical Physics ,Molecule ,Physical and Theoretical Chemistry ,Chemical Physics (physics.chem-ph) ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,Solvation shell ,chemistry ,Chemical physics ,Ionic liquid ,0210 nano-technology - Abstract
Biredox ionic liquids are a new class of functionalized electrolytes that may play an important role in future capacitive energy storage devices. By allowing additional storage of electrons inside the liquids, they can improve device performance significantly. However current devices employ nanoporous carbons in which the diffusion of the liquid and the adsorption of the ions could be affected by the occurrence of electron-transfer reactions. It is therefore necessary to understand better the thermodynamics and the kinetics of such reactions in biredox ionic liquids. Here we perform ab initio molecular dynamics simulations of both the oxidized and reduced species of several redox-active ionic molecules (used in biredox ionic liquids) dissolved in acetonitrile solvent and compare them with the bare redox molecules. We show that in all the cases, it is necessary to introduce a two Gaussian state model to calculate the reaction free energies accurately. These reaction free energies are only slightly affected by the presence of the IL group on the molecule. We characterize the structure of the solvation shell around the redox active part of the molecules and show that in the case of TEMPO-based molecules strong reorientation effects occur during the oxidation reaction., 11 pages, 12 figures
- Published
- 2020
- Full Text
- View/download PDF
47. Molecular Simulation of Electrode-Solution Interfaces
- Author
-
Benjamin Rotenberg, Laura Scalfi, Mathieu Salanne, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), and ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017)
- Subjects
Materials science ,force fields ,FOS: Physical sciences ,electrolyte ,02 engineering and technology ,Electron ,Electrolyte ,Condensed Matter - Soft Condensed Matter ,010402 general chemistry ,Electrocatalyst ,Electrochemistry ,01 natural sciences ,Quantum chemistry ,fluctuating charges ,molecular simulation ,Ion ,Physics - Chemical Physics ,[CHIM]Chemical Sciences ,electrochemical interfaces ,Physical and Theoretical Chemistry ,Physics::Chemical Physics ,Chemical Physics (physics.chem-ph) ,electric double layer ,electrode ,Computational Physics (physics.comp-ph) ,electrostatic interactions ,021001 nanoscience & nanotechnology ,Electrostatics ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,13. Climate action ,Chemical physics ,Electrode ,Soft Condensed Matter (cond-mat.soft) ,0210 nano-technology ,Physics - Computational Physics - Abstract
International audience; Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.
- Published
- 2020
- Full Text
- View/download PDF
48. Size-dependence of hydrophobic hydration at electrified gold/water interfaces
- Author
-
Martina Havenith, Simone Pezzotti, Alessandra Serva, and Mathieu Salanne
- Subjects
Work (thermodynamics) ,Materials science ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Metal ,Molecular dynamics ,Adsorption ,Physics - Chemical Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Quantitative Biology::Biomolecules ,Multidisciplinary ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Hydrophobe ,Volume (thermodynamics) ,13. Climate action ,Chemical physics ,visual_art ,Physical Sciences ,visual_art.visual_art_medium ,0210 nano-technology ,Hydrate - Abstract
Significance The optimization of “green” electrochemical processes is one of the most important challenges in the transition toward renewable energy technologies. In many of these processes, including, e.g., C O 2 and N 2 reduction, small hydrophobic molecules are formed and react at the interface, and their hydration free energy modulates the associated thermodynamics. Here, we use molecular dynamics simulations to elucidate the mechanisms and energetics of hydrophobic hydration at an electrified gold/water interface. We propose an adaptation of the Lum–Chandler–Weeks theory that maps the changes in hydration free energies at the interface as a function of solute size and applied potential.
- Published
- 2020
- Full Text
- View/download PDF
49. Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems
- Author
-
Giovanni Ciccotti, Laura Scalfi, Alessandro Coretti, Camille Bacon, Benjamin Rotenberg, Mathieu Salanne, Rodolphe Vuilleumier, Sara Bonella, Centre Européen de Calcul Atomique et Moléculaire (CECAM), École normale supérieure de Lyon (ENS de Lyon)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Politecnico di Torino = Polytechnic of Turin (Polito), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Processus d'Activation Sélective par Transfert d'Energie Uni-électronique ou Radiatif (UMR 8640) (PASTEUR), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Fisica Nucleare [Sezione di Roma 1] (INFN), Istituto Nazionale di Fisica Nucleare, Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017), École normale supérieure - Lyon (ENS Lyon)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
water ,Degrees of freedom (statistics) ,General Physics and Astronomy ,FOS: Physical sciences ,Kinematics ,010402 general chemistry ,01 natural sciences ,Stability (probability) ,law.invention ,Molecular dynamics ,law ,Physics - Chemical Physics ,0103 physical sciences ,[CHIM]Chemical Sciences ,Statistical physics ,Physical and Theoretical Chemistry ,energy-levels ,Condensed Matter - Statistical Mechanics ,Physics ,[PHYS]Physics [physics] ,Chemical Physics (physics.chem-ph) ,010304 chemical physics ,Statistical Mechanics (cond-mat.stat-mech) ,Charge density ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,Capacitor ,Electrode ,Constant (mathematics) ,Physics - Computational Physics - Abstract
International audience; Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modelling their responses to the charge distribution of electrolytes via the so-called fluctuating charge model. These fluctuating charges are additional degrees of freedom that, in a Born-Oppenheimer spirit, adapt instantaneously to changes in the environment to keep each electrode at a constant potential. Here we show that this model can be treated in the framework of constrained molecular dynamics, leading to a symplectic and time-reversible algorithm for the evolution of all the degrees of freedom of the system. The computational cost and the accuracy of the new method are similar to current alternative implementations of the model. The advantage lies in the accuracy and long term stability guaranteed by the formal properties of the algorithm and in the possibility to systematically introduce additional kinematic conditions of arbitrary number and form. We illustrate the performance of the constrained dynamics approach by enforcing the electroneutrality of the electrodes in a simple capacitor consisting of two graphite electrodes separated by a slab of liquid water.
- Published
- 2020
- Full Text
- View/download PDF
50. Structural study of Na2O-B2O3-SiO2-La2O3 glasses from molecular simulations using a polarizable force field
- Author
-
Fabien Pacaud, Jean-Marc Delaye, Thibault Charpentier, Laurent Cormier, Mathieu Salanne, Service Manutention Phénix (SMP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEA Marcoule, Bagnols-sur-Ceze, France, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Structure et Dynamique par Résonance Magnétique (LCF) (LSDRM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Propriétés des amorphes, liquides et minéraux [IMPMC] (IMPMC_PALM), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), and Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lanthanide ,Materials science ,Ionic bonding ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Force field (chemistry) ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Ion ,Molecular dynamics ,Homogeneous ,Polarizability ,Chemical physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Materials Chemistry ,Ceramics and Composites ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,0210 nano-technology - Abstract
International audience; The properties of Na2O-B2O3-SiO2+La2O3 glasses (NBS_La) are not well understood. In particular the influence of the lanthanides on the polymerized network structure and organization are not well known. In this work, we use a Polarizable Ion Model (PIM) that was fitted on electronic structure calculations to simulate a series of NBS_La glasses using molecular dynamics. The simulations account well for the main structural characteristics of NBS_La glasses such as the structure factors and the ionic local environments despite minor discrepancies with experiments about the Si-O distance and the B coordination. In particular, we examine the impact of La2O3 addition to Na2O-B2O3-SiO2 glasses in term of structural changes and in the Na migration paths which become more homogeneous.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.