Back to Search Start Over

Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular-Level Insights into the Electrical Double Layer

Authors :
Mahnaz Azimzadeh Sani
Paolo Cignoni
Marie-Pierre Gaigeot
Mathieu Salanne
Julia Linnemann
Kristina Tschulik
Nicholas G. Pavlopoulos
Simone Pezzotti
Alessandra Serva
PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX)
Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Laboratoire Analyse, Modélisation et Matériaux pour la Biologie et l'Environnement (LAMBE - UMR 8587)
Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Source :
Angewandte Chemie International Edition, Angewandte Chemie International Edition, 2022, 61 (5), ⟨10.1002/anie.202112679⟩
Publication Year :
2021

Abstract

The electrical double-layer plays a key role in important interfacial electrochemical processes from catalysis to energy stor-age and corrosion. Therefore, understanding its structure is crucial for the progress of sustainable technologies. We extract new physico-chemical information on the capacitance and structure of the electrical double-layer of platinum and gold nanoparticles at the molecular level, employing single nanoparticle electrochemistry. We reveal that the charge storage ability of the solid/liquid interface is larger by one order-of-magnitude than predicted by the traditional mean-field models of the double-layer such as the Gouy-Chapman-Stern-model. Performing Molecular Dynamics simulations, we investigate the possible relationship between the measured high capacitance and adsorption strength of the water adlayer formed at the metal surface. These insights may launch the active tuning of solid-solvent and solvent-solvent interactions as innovative design strategy to transform energy technologies towards superior performance and sustainability.

Details

ISSN :
15213773 and 14337851
Volume :
61
Issue :
5
Database :
OpenAIRE
Journal :
Angewandte Chemie (International ed. in English)
Accession number :
edsair.doi.dedup.....4bcd9faf58298777508d5f27f06240c4
Full Text :
https://doi.org/10.1002/anie.202112679⟩