123 results on '"Mathieu Lewin"'
Search Results
2. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science
- Author
-
Andrew M. Teale, Trygve Helgaker, Andreas Savin, Carlo Adamo, Bálint Aradi, Alexei V. Arbuznikov, Paul W. Ayers, Evert Jan Baerends, Vincenzo Barone, Patrizia Calaminici, Eric Cancès, Emily A. Carter, Pratim Kumar Chattaraj, Henry Chermette, Ilaria Ciofini, T. Daniel Crawford, Frank De Proft, John F. Dobson, Claudia Draxl, Thomas Frauenheim, Emmanuel Fromager, Patricio Fuentealba, Laura Gagliardi, Giulia Galli, Jiali Gao, Paul Geerlings, Nikitas Gidopoulos, Peter M. W. Gill, Paola Gori-Giorgi, Andreas Görling, Tim Gould, Stefan Grimme, Oleg Gritsenko, Hans Jørgen Aagaard Jensen, Erin R. Johnson, Robert O. Jones, Martin Kaupp, Andreas M. Köster, Leeor Kronik, Anna I. Krylov, Simen Kvaal, Andre Laestadius, Mel Levy, Mathieu Lewin, Shubin Liu, Pierre-François Loos, Neepa T. Maitra, Frank Neese, John P. Perdew, Katarzyna Pernal, Pascal Pernot, Piotr Piecuch, Elisa Rebolini, Lucia Reining, Pina Romaniello, Adrienn Ruzsinszky, Dennis R. Salahub, Matthias Scheffler, Peter Schwerdtfeger, Viktor N. Staroverov, Jianwei Sun, Erik Tellgren, David J. Tozer, Samuel B. Trickey, Carsten A. Ullrich, Alberto Vela, Giovanni Vignale, Tomasz A. Wesolowski, Xin Xu, Weitao Yang, Chemistry, General Chemistry, Vriendenkring VUB, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Systèmes de Fermions Finis - Agrégats (LPT), Laboratoire de Physique Théorique (LPT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), ANR-10-LABX-0026,CSC,Center of Chemistry of Complex System(2010), ANR-19-CE07-0024,Co-LAB,Acide/base de Lewis confinées(2019), and European Project: 863481,PTEROSOR
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Materials Science ,ddc:540 ,General Physics and Astronomy ,Humans ,Physical and Theoretical Chemistry - Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 300 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 776 entries, the paper represents a broad snapshot of DFT, anno 2022.
- Published
- 2022
- Full Text
- View/download PDF
3. Derivation of Pekar's Polarons from a Microscopic Model of Quantum Crystal.
- Author
-
Mathieu Lewin and Nicolas Rougerie
- Published
- 2013
- Full Text
- View/download PDF
4. Which Nuclear Shape Generates the Strongest Attraction on a Relativistic Electron? An Open Problem in Relativistic Quantum Mechanics
- Author
-
Maria J. Esteban, Mathieu Lewin, and Éric Séré
- Published
- 2022
- Full Text
- View/download PDF
5. Dirac–Coulomb operators with general charge distribution II. The lowest eigenvalue
- Author
-
Maria J. Esteban, Eric Séré, Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), ANR-17-CE29-0004,molQED,Electrodynamique Quantique Moléculaire(2017), European Project: 725528,MDFT, Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Dirac (software) ,FOS: Physical sciences ,Dirac operator ,01 natural sciences ,Measure (mathematics) ,Mathematics - Spectral Theory ,35P30, 49J35, 49R05, 81Q10 ,symbols.namesake ,Mathematics - Analysis of PDEs ,Operator (computer programming) ,0103 physical sciences ,FOS: Mathematics ,Coulomb ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematical Physics ,Eigenvalues and eigenvectors ,Mathematical physics ,Mathematics ,Lebesgue measure ,010102 general mathematics ,Spectrum (functional analysis) ,Mathematical Physics (math-ph) ,symbols ,010307 mathematical physics ,Analysis of PDEs (math.AP) - Abstract
Consider the Coulomb potential $-\mu\ast|x|^{-1}$ generated by a non-negative finite measure $\mu$. It is well known that the lowest eigenvalue of the corresponding Schr\"odinger operator $-\Delta/2-\mu\ast|x|^{-1}$ is minimized, at fixed mass $\mu(\mathbb{R}^3)=\nu$, when $\mu$ is proportional to a delta. In this paper we investigate the conjecture that the same holds for the Dirac operator $-i\alpha\cdot\nabla+\beta-\mu\ast|x|^{-1}$. In a previous work on the subject we proved that this operator is self-adjoint when $\mu$ has no atom of mass larger than or equal to 1, and that its eigenvalues are given by min-max formulas. Here we consider the critical mass $\nu_1$, below which the lowest eigenvalue does not dive into the lower continuum spectrum for all $\mu\geq0$ with $\mu(\mathbb{R}^3), Comment: Final version to appear in Proc. London Math. Soc
- Published
- 2021
- Full Text
- View/download PDF
6. Improved Lieb-Oxford bound on the indirect and exchange energies
- Author
-
Mathieu Lewin, Elliott H. Lieb, Robert Seiringer, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Department of Physics, Princeton University (DPPU), Princeton University, Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria), and European Project: 725528,MDFT
- Subjects
Chemical Physics (physics.chem-ph) ,Statistical Mechanics (cond-mat.stat-mech) ,Physics - Chemical Physics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Mathematical Physics ,Condensed Matter - Statistical Mechanics - Abstract
The Lieb-Oxford inequality provides a lower bound on the Coulomb energy of a classical system of $N$ identical charges only in terms of their one-particle density. We prove here a new estimate on the best constant in this inequality. Numerical evaluation provides the value 1.58, which is a significant improvement to the previously known value 1.64. The best constant has recently been shown to be larger than 1.44. In a second part, we prove that the constant can be reduced to 1.25 when the inequality is restricted to Hartree-Fock states. This is the first proof that the exchange term is always much lower than the full indirect Coulomb energy., Final version to appear in Lett. Math. Phys. This article belongs to the themed collection: "Mathematical Physics and Numerical Simulation of Many-Particle Systems"; V. Bach and L. Delle Site (eds.)
- Published
- 2022
- Full Text
- View/download PDF
7. Computing electronic structures: A new multiconfiguration approach for excited states.
- Author
-
Eric Cancès, Hervé Galicher, and Mathieu Lewin
- Published
- 2006
- Full Text
- View/download PDF
8. Théorie spectrale et mécanique quantique
- Author
-
Mathieu Lewin
- Published
- 2022
- Full Text
- View/download PDF
9. Coulomb and Riesz gases: The known and the unknown
- Author
-
Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), and European Project: 725528,MDFT
- Subjects
Statistical Mechanics (cond-mat.stat-mech) ,Probability (math.PR) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Mathematics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Mathematical Physics ,Condensed Matter - Statistical Mechanics ,Mathematics - Probability - Abstract
We review what is known, unknown and expected about the mathematical properties of Coulomb and Riesz gases. Those describe infinite configurations of points in $\mathbb{R}^d$ interacting with the Riesz potential $\pm |x|^{-s}$ (resp. $-\log|x|$ for $s=0$). Our presentation follows the standard point of view of statistical mechanics, but we also mention how these systems arise in other important situations (e.g. in random matrix theory). The main question addressed in the article is how to properly define the associated infinite point process and characterize it using some (renormalized) equilibrium equation. This is largely open in the long range case $sd$. In the last part we discuss phase transitions and mention what is expected on physical grounds., Comment: Final version to appear in J. Math. Phys. in the special collection of papers honoring Freeman Dyson
- Published
- 2022
- Full Text
- View/download PDF
10. Classical Density Functional Theory: Representability and Universal Bounds
- Author
-
Michal Jex, Mathieu Lewin, Peter S. Madsen, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Faculty of Nuclear Sciences and Physical Engineering [Prague] (FJFI CTU), Czech Technical University in Prague (CTU), and European Project: 725528,MDFT
- Subjects
Statistical Mechanics (cond-mat.stat-mech) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Mathematical Physics ,Condensed Matter - Statistical Mechanics - Abstract
We provide upper and lower bounds on the lowest free energy of a classical system at given one-particle density $\rho(x)$. We study both the canonical and grand-canonical cases, assuming the particles interact with a pair potential which decays fast enough at infinity., Comment: Final version to appear in the Journal of Statistical Physics
- Published
- 2022
- Full Text
- View/download PDF
11. Théorème spectral et calcul fonctionnel
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
12. Opérateurs de Schrödinger périodiques et propriétés électroniques des matériaux
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
13. Critères d’auto-adjonction : Rellich, Kato & Friedrichs
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
14. Spectre des opérateurs auto-adjoints
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
15. Introduction à la mécanique quantique : l’atome d’hydrogène
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
16. Auto-adjonction
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
17. Systèmes à N particules, atomes, molécules
- Author
-
Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
18. The periodic Lieb–Thirring inequality
- Author
-
Rupert L. Frank, David Gontier, and Mathieu Lewin
- Published
- 2021
- Full Text
- View/download PDF
19. Spectral Theory and Quantum Mechanics
- Author
-
Mathieu Lewin and Mathieu Lewin
- Subjects
- Operator theory, Mathematical physics, Differential equations, Quantum physics
- Abstract
This textbook presents the spectral theory of self-adjoint operators on Hilbert space and its applications in quantum mechanics. Based on a course taught by the author in Paris, the book not only covers the mathematical theory but also provides its physical interpretation, offering an accessible introduction to quantum mechanics for students with a background in mathematics. The presentation incorporates numerous physical examples to illustrate the abstract theory. The final two chapters present recent findings on Schrödinger's equation for systems of particles. While primarily designed for graduate courses, the book can also serve as a valuable introduction to the subject for more advanced readers. It requires no prior knowledge of physics, assuming only a graduate-level understanding of mathematical analysis from the reader.
- Published
- 2024
20. The nonlinear Schr\'odinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities
- Author
-
Mathieu Lewin, Rupert L. Frank, David Gontier, Department of Mathematics (Caltech), Mathematisches Institut [München] (LMU), Ludwig-Maximilians-Universität München (LMU), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), European Project: 725528,MDFT, Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Conjecture ,Operator (physics) ,010102 general mathematics ,Statistical and Nonlinear Physics ,State (functional analysis) ,Mathematics::Spectral Theory ,16. Peace & justice ,01 natural sciences ,Schrödinger equation ,Mathematics - Spectral Theory ,symbols.namesake ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,symbols ,Orthonormal basis ,010307 mathematical physics ,0101 mathematics ,Constant (mathematics) ,Nonlinear Schrödinger equation ,Eigenvalues and eigenvectors ,Mathematical Physics ,Mathematical physics ,Mathematics - Abstract
In this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb-Thirring constant when the eigenvalues of a Schr\"odinger operator $-\Delta+V(x)$ are raised to the power $\kappa$ is never given by the one-bound state case when $\kappa>\max(0,2-d/2)$ in space dimension $d\geq1$. When in addition $\kappa\geq1$ we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo-Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb-Thirring inequality, in the same spirit as in Part I of this work (D. Gontier, M. Lewin & F.Q. Nazar, arXiv:2002.04963). In a different but related direction, we also show that the cubic nonlinear Schr\"odinger equation admits no orthonormal ground state in 1D, for more than one function., Comment: Includes some new properties of the one-bound state (Gagliardo-Nirenberg) constant
- Published
- 2021
- Full Text
- View/download PDF
21. The nonlinear Schr\'odinger equation for orthonormal functions: I. Existence of ground states
- Author
-
David Gontier, Mathieu Lewin, Faizan Q. Nazar, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), European Project: 725528,MDFT, Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
media_common.quotation_subject ,Dirac (software) ,01 natural sciences ,Mathematics - Spectral Theory ,symbols.namesake ,Mathematics - Analysis of PDEs ,Mathematics (miscellaneous) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Orthonormal basis ,[MATH]Mathematics [math] ,0101 mathematics ,Translational symmetry ,Quantum ,Nonlinear Schrödinger equation ,Mathematical Physics ,Mathematical physics ,media_common ,Physics ,Mechanical Engineering ,010102 general mathematics ,16. Peace & justice ,Infinity ,010101 applied mathematics ,symbols ,Exponent ,Constant (mathematics) ,Analysis - Abstract
We study the nonlinear Schr\"odinger equation for systems of $N$ orthonormal functions. We prove the existence of ground states for all $N$ when the exponent $p$ of the non linearity is not too large, and for an infinite sequence $N_j$ tending to infinity in the whole range of possible $p$'s, in dimensions $d\geq1$. This allows us to prove that translational symmetry is broken for a quantum crystal in the Kohn-Sham model with a large Dirac exchange constant., Comment: Final version, to appear in Arch. Rat. Mech. Anal
- Published
- 2021
- Full Text
- View/download PDF
22. Classical field theory limit of many-body quantum Gibbs states in 2D and 3D
- Author
-
Phan Thành Nam, Mathieu Lewin, Nicolas Rougerie, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Ludwig-Maximilians-Universität München (LMU), Laboratoire de physique et modélisation des milieux condensés [2020-….] (LPM2C [2020-….]), Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS), European Project: 725528,MDFT, European Project: 758620,CORFRONMAT, Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2020-....] (UGA [2020-....]), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de physique et modélisation des milieux condensés (LPM2C ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and European Project: 758620,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),CORFRONMAT(2018)
- Subjects
Bose gas ,[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Gibbs state ,01 natural sciences ,Renormalization ,symbols.namesake ,Mathematics - Analysis of PDEs ,0103 physical sciences ,Quantum system ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Statistical physics ,0101 mathematics ,Gibbs measure ,Quantum ,Mathematical Physics ,Mathematics ,Entropy (statistical thermodynamics) ,010102 general mathematics ,Classical field theory ,Mathematical Physics (math-ph) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Quantum Gases (cond-mat.quant-gas) ,symbols ,010307 mathematical physics ,Condensed Matter - Quantum Gases ,Analysis of PDEs (math.AP) - Abstract
We provide a rigorous derivation of nonlinear Gibbs measures in two and three space dimensions, starting from many-body quantum systems in thermal equilibrium. More precisely, we prove that the grand-canonical Gibbs state of a large bosonic quantum system converges to the Gibbs measure of a nonlinear Schr{\"o}dinger-type classical field theory, in terms of partition functions and reduced density matrices. The Gibbs measure thus describes the behavior of the infinite Bose gas at criticality, that is, close to the phase transition to a Bose-Einstein condensate. The Gibbs measure is concentrated on singular distributions and has to be appropriately renormalized, while the quantum system is well defined without any renormalization. By tuning a single real parameter (the chemical potential), we obtain a counter-term for the diverging repulsive interactions which provides the desired Wick renormalization of the limit classical theory. The proof relies on a new estimate on the entropy relative to quasi-free states and a novel method to control quantum variances., Comment: This revised version (to appear in Inventiones Mathematicae) covers both the 2D and 3D cases. It replaces an older 2018 work that was limited to 2D. The older, non-refereed, version is accessible as v1-v2 of the preprint
- Published
- 2020
- Full Text
- View/download PDF
23. Derivation of the magnetic Euler–Heisenberg energy
- Author
-
Mathieu Lewin, Eric Séré, Philippe Gravejat, Analyse, Géométrie et Modélisation (AGM - UMR 8088), CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), ANR-10-BLAN-0101,NoNAP,Problèmes non linéaires en physique atomique et nucléaire(2010), European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Renormalization ,symbols.namesake ,Mathematics - Analysis of PDEs ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Vacuum energy ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Quantum field theory ,Mathematical Physics ,Mathematics ,Coupling constant ,Quantum Physics ,010308 nuclear & particles physics ,Applied Mathematics ,010102 general mathematics ,Mathematical Physics (math-ph) ,Magnetic field ,Regularization (physics) ,Quantum electrodynamics ,Euler's formula ,symbols ,Quantum Physics (quant-ph) ,Ground state ,Analysis of PDEs (math.AP) - Abstract
In quantum field theory, the vacuum is a fluctuating medium which behaves as a nonlinear polarizable material. In this article, we perform the first rigorous derivation of the magnetic Euler-Heisenberg effective energy, a nonlinear functional that describes the effective fluctuations of the quantum vacuum in a classical magnetic field. We start from a classical magnetic field in interaction with a quan-tized Dirac field in its ground state, and we study a limit in which the classical magnetic field is slowly varying. After a change of scales, this is equivalent to a semi-classical limit $\hbar\to0$, with a strong magnetic field of order $1/\hbar$. In this regime, we prove that the energy of Dirac's polarized vacuum converges to the Euler-Heisenberg functional. The model has ultraviolet divergences, which we regularize using the Pauli-Villars method. We also discuss how to remove the regularization of the Euler-Heisenberg effective Lagrangian, using charge renormaliza-tion, perturbatively to any order of the coupling constant., Final version to appear in J. Math. Pure Appl
- Published
- 2018
- Full Text
- View/download PDF
24. The Physics and Mathematics of Elliott Lieb
- Author
-
Rupert L. Frank, Ari Laptev, Mathieu Lewin, Robert Seiringer, Rupert L. Frank, Ari Laptev, Mathieu Lewin, and Robert Seiringer
- Abstract
These two volumes are dedicated to Elliott Lieb on the occasion of his 90th birthday. They celebrate his fundamental contributions to the fields of mathematics, physics and chemistry. Around 50 chapters give an extensive account of Lieb’s impact on a very broad range of topics and the resulting subsequent developments. Many contributions are of an expository character and are accessible to a non-expert audience of researchers in mathematics, physics and chemistry. A non-exhaustive list of topics covered includes the problem of stability of matter, quantum many-body systems, density functional theory, topics in statistical mechanics, entropy inequalities and matrix analysis, functional inequalities and sharp constants.
- Published
- 2022
25. The Scott correction in Dirac-Fock theory
- Author
-
Mathieu Lewin, Arnaud Triay, Soeren Fournais, Department of Mathematical [Aarhus], Aarhus University [Aarhus], CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), European Project: 725528,MDFT, Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Dirac (software) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Complex system ,QUANTUM ELECTRODYNAMICS ,FOS: Physical sciences ,01 natural sciences ,Fock space ,Mathematics - Spectral Theory ,GROUND-STATE ENERGY ,0103 physical sciences ,FOS: Mathematics ,Physics::Atomic Physics ,0101 mathematics ,POLARIZED VACUUM ,Spectral Theory (math.SP) ,Mathematical Physics ,Mathematical physics ,MEAN-FIELD THEORY ,Physics ,OPERATORS ,SELF-ADJOINT EXTENSIONS ,010102 general mathematics ,ASYMPTOTICS ,Atom (order theory) ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,STATISTICAL ATOM ,010307 mathematical physics ,HEAVY-ATOMS ,THOMAS-FERMI MODEL - Abstract
International audience; We give the first derivation of the Scott correction in the large-$Z$ expansion of the energy of an atom in Dirac-Fock theory without projections.
- Published
- 2020
- Full Text
- View/download PDF
26. Compactness of Molecular Reaction Paths in Quantum Mechanics
- Author
-
Mathieu Lewin, Ioannis Anapolitanos, Karlsruhe Institute of Technology (KIT), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), European Project: 725528,MDFT, Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Critical point (mathematics) ,Mathematics - Spectral Theory ,symbols.namesake ,Mathematics (miscellaneous) ,Mathematics - Analysis of PDEs ,Quantum mechanics ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Quantum ,Spectral Theory (math.SP) ,Eigenvalues and eigenvectors ,Mathematical Physics ,Mechanical Engineering ,010102 general mathematics ,Mathematical Physics (math-ph) ,Maxima and minima ,Compact space ,Bounded function ,symbols ,010307 mathematical physics ,Multipole expansion ,Analysis ,Schrödinger's cat ,Analysis of PDEs (math.AP) ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
We study isomerizations in quantum mechanics. We consider a neutral molecule composed of N quantum electrons and M classical nuclei and assume that the first eigenvalue of the corresponding N-particle Schr\"odinger operator possesses two local minima with respect to the locations of the nuclei. An isomerization is a mountain pass problem between these two local configurations, where one minimizes over all possible paths the highest value of the energy along the paths. Here we state a conjecture about the compactness of min-maxing sequences of such paths, which we then partly solve in the particular case of a molecule composed of two rigid sub-molecules that can move freely in space. More precisely, under appropriate assumptions on the multipoles of the two molecules, we are able to prove that the distance between them stays bounded during the whole chemical reaction. We obtain a critical point at the mountain pass level, which is called a transition state in chemistry. Our method requires to study the critical points and the Morse indices of the classical multipole interactions, as well as to improve existing results about the van der Waals force. This paper generalizes previous works by the second author in several directions., Comment: Final version to appear in Arch. Rat. Mech. Anal
- Published
- 2020
- Full Text
- View/download PDF
27. The Hartree and Vlasov equations at positive density
- Author
-
Mathieu Lewin, Julien Sabin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, ANR-17-CE40-0016,DYRAQ,Dynamique des systèmes quantiques relativistes(2017), European Project: 725528,MDFT, Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Range (particle radiation) ,Applied Mathematics ,010102 general mathematics ,Infinite volume ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Hartree ,Mathematical Physics (math-ph) ,01 natural sciences ,010101 applied mathematics ,Nonlinear system ,Interaction potential ,Mathematics - Analysis of PDEs ,Hartree equation ,Homogeneous ,FOS: Mathematics ,0101 mathematics ,Analysis ,Stationary state ,Mathematical Physics ,Mathematics ,Mathematical physics ,Analysis of PDEs (math.AP) - Abstract
International audience; We consider the nonlinear Hartree and Vlasov equations around a translation-invariant (homogeneous) stationary state in infinite volume, for a short range interaction potential. For both models, we consider time-dependent solutions which have a finite relative energy with respect to the reference translation-invariant state. We prove the convergence of the Hartree solutions to the Vlasov ones in a semi-classical limit and obtain as a by-product global well-posedness of the Vlasov equation in the (relative) energy space.
- Published
- 2020
- Full Text
- View/download PDF
28. The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, non-degeneracy and applications
- Author
-
Simona Rota Nodari, Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), ANR-17-CE40-0016,DYRAQ,Dynamique des systèmes quantiques relativistes(2017), European Project: 725528,MDFT, Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Conjecture ,Applied Mathematics ,010102 general mathematics ,Orbital stability ,01 natural sciences ,Schrödinger equation ,Mathematics - Spectral Theory ,010101 applied mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,0101 mathematics ,Degeneracy (mathematics) ,Spectral Theory (math.SP) ,Nonlinear Schrödinger equation ,Analysis ,Analysis of PDEs (math.AP) ,Mathematics ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
In this paper we first prove a general result about the uniqueness and non-degeneracy of positive radial solutions to equations of the form $$\Delta u+g(u)=0$$ . Our result applies in particular to the double power non-linearity where $$g(u)=u^q-u^p-\mu u$$ for $$p>q>1$$ and $$\mu >0$$ , which we discuss with more details. In this case, the non-degeneracy of the unique solution $$u_\mu $$ allows us to derive its behavior in the two limits $$\mu \rightarrow 0$$ and $$\mu \rightarrow \mu _*$$ where $$\mu _*$$ is the threshold of existence. This gives the uniqueness of energy minimizers at fixed mass in certain regimes. We also make a conjecture about the variations of the $$L^2$$ mass of $$u_\mu $$ in terms of $$\mu $$ , which we illustrate with numerical simulations. If valid, this conjecture would imply the uniqueness of energy minimizers in all cases and also give some important information about the orbital stability of $$u_\mu $$ .
- Published
- 2020
- Full Text
- View/download PDF
29. Semi-classical limit of large fermionic systems at positive temperature
- Author
-
Mathieu Lewin, Arnaud Triay, Peter S. Madsen, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Aarhus University [Aarhus], European Project: 725528,MDFT, Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Condensed Matter::Quantum Gases ,010102 general mathematics ,Space dimension ,Semiclassical physics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Fermion ,Mathematical Physics (math-ph) ,01 natural sciences ,Classical limit ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Convergence (routing) ,FOS: Mathematics ,Positive temperature ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,010307 mathematical physics ,0101 mathematics ,Thomas–Fermi model ,Intensity (heat transfer) ,Mathematical Physics ,Mathematical physics ,Analysis of PDEs (math.AP) - Abstract
We study a system of $N$ interacting fermions at positive temperature in a confining potential. In the regime where the intensity of the interaction scales as $1/N$ and with an effective semi-classical parameter $\hbar=N^{-1/d}$ where $d$ is the space dimension, we prove the convergence to the corresponding Thomas-Fermi model at positive temperature., Convergence of states rewritten. Some references added
- Published
- 2019
- Full Text
- View/download PDF
30. Derivation of renormalized Gibbs measures from equilibrium many-body quantum Bose gases
- Author
-
Mathieu Lewin, Nicolas Rougerie, Phan Thành Nam, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Ludwig-Maximilians-Universität München (LMU), Laboratoire de physique et modélisation des milieux condensés (LPM2C), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 725528,MDFT, European Project: 758620,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),CORFRONMAT(2018), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and European Project: 758620,CORFRONMAT
- Subjects
Physics ,Bose gas ,Entropy (statistical thermodynamics) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,010102 general mathematics ,FOS: Physical sciences ,Classical field theory ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Gibbs state ,01 natural sciences ,law.invention ,Renormalization ,symbols.namesake ,law ,0103 physical sciences ,symbols ,Mathematics::Metric Geometry ,010307 mathematical physics ,0101 mathematics ,Gibbs measure ,Quantum ,Bose–Einstein condensate ,Mathematical Physics ,Mathematical physics - Abstract
We review our recent result on the rigorous derivation of the renormalized Gibbs measure from the many-body Gibbs state in 1D and 2D. The many-body renormalization is accomplished by simply tuning the chemical potential in the grand-canonical ensemble, which is analogous to the Wick ordering in the classical field theory., Contribution to Proceedings of the International Congress of Mathematical Physics, Montreal, Canada, July 23-28, 2018
- Published
- 2019
- Full Text
- View/download PDF
31. Deux modèles effectifs pour les champs électromagnétiques dans le vide de Dirac
- Author
-
Christian Hainzl, Eric Séré, Philippe Gravejat, and Mathieu Lewin
- Subjects
General Medicine - Abstract
Cet expose presente des resultats recents quant a deux modeles effectifs pour les effets de la polarisation du vide quantique sur les champs electromagnetiques. Le modele de Pauli-Villars les decrit de maniere rigoureuse lorsque les champs electromagnetiques sont supposes classiques. A partir de ce premier modele est ensuite proposee une derivation du modele classique d'Euler-Heisenberg dans un regime de champs purement magnetiques et faiblement variables.
- Published
- 2016
- Full Text
- View/download PDF
32. Lower Bound on the Hartree-Fock Energy of the Electron Gas
- Author
-
David Gontier, Mathieu Lewin, Christian Hainzl, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Mathematisches Institut [Tübingen], Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, European Project: 725528,MDFT, Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Hartree–Fock method ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,01 natural sciences ,Upper and lower bounds ,010305 fluids & plasmas ,Mathematics - Spectral Theory ,Condensed Matter - Strongly Correlated Electrons ,Homogeneous ,0103 physical sciences ,FOS: Mathematics ,Atomic physics ,[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] ,010306 general physics ,Fermi gas ,Spectral Theory (math.SP) ,Astrophysics::Galaxy Astrophysics ,Mathematical Physics ,Phase diagram ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] - Abstract
The Hartree-Fock ground state of the Homogeneous Electron Gas is never translation invariant, even at high densities. As proved by Overhauser, the (paramagnetic) free Fermi Gas is always unstable under the formation of spin or charge density waves. We give here the first explicit bound on the energy gain due to the breaking of translational symmetry. Our bound is exponentially small at high density, which justifies posteriori the use of the non-interacting Fermi Gas as a reference state in the large-density expansion of the correlation energy of the Homogeneous Electron Gas. We are also able to discuss the positive temperature phase diagram and prove that the Overhauser instability only occurs at temperatures which are exponentially small at high density. Our work sheds a new light on the Hartree-Fock phase diagram of the Homogeneous Electron Gas., Extended version. Includes a new estimate on the critical temperature
- Published
- 2019
- Full Text
- View/download PDF
33. Domains for Dirac–Coulomb min-max levels
- Author
-
Maria J. Esteban, Eric Séré, Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), European Project: 725528,MDFT, Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE29-0004,molQED,Electrodynamique Quantique Moléculaire(2017)
- Subjects
Function space ,General Mathematics ,Dirac (software) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Space (mathematics) ,Dirac operator ,01 natural sciences ,Mathematics - Spectral Theory ,symbols.namesake ,Mathematics - Analysis of PDEs ,Singularity ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematical Physics ,Eigenvalues and eigenvectors ,Mathematics ,Mathematical physics ,Operator (physics) ,010102 general mathematics ,Mathematical Physics (math-ph) ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,symbols ,Spectral gap ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] ,Analysis of PDEs (math.AP) - Abstract
We consider a Dirac operator in three space dimensions, with an electrostatic (i.e. real-valued) potential $V(x)$, having a strong Coulomb-type singularity at the origin. This operator is not always essentially self-adjoint but admits a distinguished self-adjoint extension $D\_V$. In a first part we obtain new results on the domain of this extension, complementing previous works of Esteban and Loss. Then we prove the validity of min-max formulas for the eigenvalues in the spectral gap of $D\_V$, in a range of simple function spaces independent of $V$. Our results include the critical case $\liminf\_{x \to 0} |x| V(x)= -1$, with units such that $\hbar=mc^2=1$, and they are the first ones in this situation. We also give the corresponding results in two dimensions., Comment: Final version to appear in Rev. Mat. Iberoam
- Published
- 2019
- Full Text
- View/download PDF
34. The Local Density Approximation in Density Functional Theory
- Author
-
Mathieu Lewin, Robert Seiringer, Elliott H. Lieb, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Department of Physics, Princeton University, Institute of Science and Technology [Austria] (IST Austria), European Project: 725528,MDFT, European Project: 694227,H2020,ERC-2015-AdG,AQUAMS(2016), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria)
- Subjects
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Ocean Engineering ,Space (mathematics) ,01 natural sciences ,Quantum state ,35Q40 ,Physics - Chemical Physics ,0103 physical sciences ,Statistical physics ,0101 mathematics ,010306 general physics ,Schrödinger operators ,Mathematical Physics ,Condensed Matter - Statistical Mechanics ,density functional theory ,Physics ,Chemical Physics (physics.chem-ph) ,Quantum Physics ,Statistical Mechanics (cond-mat.stat-mech) ,82B10 ,010102 general mathematics ,Statistical mechanics ,Mathematical Physics (math-ph) ,81V55 ,Tensor product ,Density functional theory ,statistical mechanics ,uniform electron gas ,Local-density approximation ,Fermi gas ,Quantum Physics (quant-ph) ,Energy (signal processing) - Abstract
We give the first mathematically rigorous justification of the Local Density Approximation in Density Functional Theory. We provide a quantitative estimate on the difference between the grand-canonical Levy-Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the Uniform Electron Gas energy of this density. The error involves gradient terms and justifies the use of the Local Density Approximation in the situation where the density is very flat on sufficiently large regions in space., Comment: Final version to appear in Pure and Applied Analysis
- Published
- 2019
- Full Text
- View/download PDF
35. Floating Wigner crystal with no boundary charge fluctuations
- Author
-
Mathieu Lewin, Elliott H. Lieb, Robert Seiringer, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), Centre National de la Recherche Scientifique (CNRS), Department of Physics, Princeton University, Institute of Science and Technology [Austria] (IST Austria), European Project: 725528,MDFT, European Project: 694227,H2020,ERC-2015-AdG,AQUAMS(2016), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria)
- Subjects
Chemical Physics (physics.chem-ph) ,Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed matter physics ,Jellium ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Boundary (topology) ,Mathematical Physics (math-ph) ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Wigner crystal ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,Periodic boundary conditions ,Density functional theory ,010306 general physics ,0210 nano-technology ,Ground state ,Fermi gas ,Mathematical Physics - Abstract
We modify the "floating crystal" trial state for the classical Homogeneous Electron Gas (also known as Jellium), in order to suppress the boundary charge fluctuations that are known to lead to a macroscopic increase of the energy. The argument is to melt a thin layer of the crystal close to the boundary and consequently replace it by an incompressible fluid. With the aid of this trial state we show that three different definitions of the ground state energy of Jellium coincide. In the first point of view the electrons are placed in a neutralizing uniform background. In the second definition there is no background but the electrons are submitted to the constraint that their density is constant, as is appropriate in Density Functional Theory. Finally, in the third system each electron interacts with a periodic image of itself, that is, periodic boundary conditions are imposed on the interaction potential., Includes some final corrections. Version to appear in Phys. Rev. B
- Published
- 2019
- Full Text
- View/download PDF
36. The semi-classical limit of large fermionic systems
- Author
-
Mathieu Lewin, Jan Philip Solovej, Søren Fournais, Department of Mathematical [Aarhus], Aarhus University [Aarhus], CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Sciences [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Sapere Aude grant, European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), European Project: 321029,EC:FP7:ERC,ERC-2012-ADG_20120216,MASTRUMAT(2013), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)
- Subjects
media_common.quotation_subject ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Classical limit ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,010306 general physics ,Mathematical Physics ,Mathematical physics ,Mathematics ,media_common ,Applied Mathematics ,010102 general mathematics ,Fermion ,Mathematical Physics (math-ph) ,Infinity ,Compact space ,Mean field theory ,Phase space ,Coherent states ,Analysis ,Analysis of PDEs (math.AP) - Abstract
We study a system of $N$ fermions in the regime where the intensity of the interaction scales as $1/N$ and with an effective semi-classical parameter $\hbar=N^{-1/d}$ where $d$ is the space dimension. For a large class of interaction potentials and of external electromagnetic fields, we prove the convergence to the Thomas-Fermi minimizers in the limit $N\to\infty$. The limit is expressed using many-particle coherent states and Wigner functions. The method of proof is based on a fermionic de Finetti-Hewitt-Savage theorem in phase space and on a careful analysis of the possible lack of compactness at infinity., Final version published in Calculus of Variations and Partial Differential Equations (2018)
- Published
- 2018
- Full Text
- View/download PDF
37. Une cartographie de la communauté mathématique française
- Author
-
Maxime Chupin, Jean Dolbeault, Esteban, Maria J., Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO] - Abstract
National audience; Cette étude tente de dresser une cartographie thématique des mathématiques universitaires en France, définies ici comme l'ensemble des électeurs des deux sections CNU 25 et 26. Basée sur les publications référencées dans MathSciNet et la classification MSC, elle met en évidence la répartition des forces entre les différents domaines de recherche, et compare ces résultats avec le découpage en deux sections CNU. L'approche retenue permet aussi de déterminer la part des chercheurs et enseignants-chercheurs travaillant sur les "applications des mathématiques" et de réaliser une cartographie similaire pour les recrutements des CR au CNRS pendant la période 2005-2016.
- Published
- 2018
38. Statistical mechanics of the uniform electron gas
- Author
-
Mathieu Lewin, Elliott H. Lieb, Robert Seiringer, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Departments of Physics and Mathematics, Princeton University, Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria), European Project: 725528,MDFT, Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and Institute of Science and Technology [Austria] (IST Austria)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,Statistical Mechanics (cond-mat.stat-mech) ,General Mathematics ,010102 general mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,01 natural sciences ,Physics - Chemical Physics ,0103 physical sciences ,0101 mathematics ,010306 general physics ,Humanities ,Mathematical Physics ,Condensed Matter - Statistical Mechanics - Abstract
In this paper we define and study the classical Uniform Electron Gas (UEG), a system of infinitely many electrons whose density is constant everywhere in space. The UEG is defined differently from Jellium, which has a positive constant background but no constraint on the density. We prove that the UEG arises in Density Functional Theory in the limit of a slowly varying density, minimizing the indirect Coulomb energy. We also construct the quantum UEG and compare it to the classical UEG at low density., Comment: Final version to appear in J. Ec. polytech. Math
- Published
- 2018
- Full Text
- View/download PDF
39. Blow-up profile of rotating 2D focusing Bose gases
- Author
-
Nicolas Rougerie, Mathieu Lewin, Phan Thành Nam, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Ludwig-Maximilians-Universität München (LMU), Laboratoire de physique et modélisation des milieux condensés (LPM2C), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Daniela Cadamuro, Maximilian Duell, Wojciech Dybalski and Sergio Simonella, European Project: 725528,MDFT, European Project: 758620,CORFRONMAT, Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and European Project: 758620,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),CORFRONMAT(2018)
- Subjects
Bose gas ,[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Omega ,symbols.namesake ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,010306 general physics ,Nonlinear Schrödinger equation ,Mathematical Physics ,Mathematical physics ,Boson ,Physics ,Coupling constant ,Condensed Matter::Quantum Gases ,010102 general mathematics ,Harmonic potential ,Mathematical Physics (math-ph) ,Quantum Gases (cond-mat.quant-gas) ,symbols ,Condensed Matter - Quantum Gases ,Hamiltonian (quantum mechanics) ,Ground state ,Analysis of PDEs (math.AP) - Abstract
Conference in honor of Herbert Spohn 70th birthday, Munich, Germany, March 20 – April 1, 2017; International audience; We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation $\Omega$. First we study the behavior of the ground state when the coupling constant approaches $a_*$ , the critical strength of the cubic nonlinearity for the focusing nonlinear Schrödinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of $\Omega$, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141–156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for $N$ bosons, interacting with a potential rescaled in the mean-field manner $−a_N N^{2\beta−1} w(N^{\beta} x), with $w$ a positive function such that $\int_{\mathbb{R}^2} w(x) dx = 1$. Assuming that $\beta < 1/2$ and that $a_N \to a_*$ sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit $N \to \infty$.
- Published
- 2018
- Full Text
- View/download PDF
40. The crystallization conjecture: a review
- Author
-
Mathieu Lewin, Xavier Blanc, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-10-BLAN-0101,NoNAP,Problèmes non linéaires en physique atomique et nucléaire(2010), European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Physics ,Conjecture ,Statistical Mechanics (cond-mat.stat-mech) ,General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,010102 general mathematics ,FOS: Physical sciences ,01 natural sciences ,law.invention ,Maxima and minima ,Theoretical physics ,Mathematics - Analysis of PDEs ,law ,Lattice (order) ,0103 physical sciences ,Thermodynamic limit ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,0101 mathematics ,Crystallization ,010306 general physics ,Condensed Matter - Statistical Mechanics ,Analysis of PDEs (math.AP) - Abstract
In this article we describe the crystallization conjecture. It states that, in appropriate physical conditions, interacting particles always place themselves into periodic configurations, breaking thereby the natural translation-invariance of the system. This famous problem is still largely open. Mathematically, it amounts to studying the minima of a real-valued function defined on $\mathbb{R}^{3N}$ where $N$ is the number of particles, which tends to infinity. We review the existing literature and mention several related open problems, of which many have not been thoroughly studied., Final version to appear in EMS Surv. Math. Sci
- Published
- 2015
- Full Text
- View/download PDF
41. Semi-classical limit of the Levy-Lieb functional in Density Functional Theory
- Author
-
Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), European Project: 725528,MDFT, Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Mixed states ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Classical limit ,Mathematics - Analysis of PDEs ,Physics - Chemical Physics ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,010306 general physics ,Quantum ,Mathematical Physics ,Mathematical physics ,Mathematics ,Chemical Physics (physics.chem-ph) ,010102 general mathematics ,Mathematics::History and Overview ,Mathematical Physics (math-ph) ,General Medicine ,16. Peace & justice ,Regularization (physics) ,Density functional theory ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Analysis of PDEs (math.AP) - Abstract
In a recent work, Bindini and De Pascale have introduced a regularization of $N$-particle symmetric probabilities which preserves their one-particle marginals. In this short note, we extend their construction to mixed quantum fermionic states. This enables us to prove the convergence of the Levy-Lieb functional in Density Functional Theory , to the corresponding multi-marginal optimal transport in the semi-classical limit. Our result holds for mixed states of any particle number $N$, with or without spin., Final version to appear in Comptes rendus de l'Acad{\'e}mie des Sciences, Math{\'e}matiques
- Published
- 2017
- Full Text
- View/download PDF
42. Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes
- Author
-
Mathieu Lewin
- Subjects
Physics ,General Medicine - Published
- 2014
- Full Text
- View/download PDF
43. Derivation of Hartree’s theory for mean-field Bose gases
- Author
-
Mathieu Lewin
- Subjects
Physics ,Mean field limit ,Mean field theory ,law ,Quantum mechanics ,Quantum electrodynamics ,General Medicine ,Hartree ,Bose–Einstein condensate ,law.invention - Published
- 2014
- Full Text
- View/download PDF
44. The Hartree Equation for Infinitely Many Particles I. Well-Posedness Theory
- Author
-
Julien Sabin, Mathieu Lewin, Analyse, Géométrie et Modélisation (AGM - UMR 8088), CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS), ANR-10-BLAN-0101,NoNAP,Problèmes non linéaires en physique atomique et nucléaire(2010), European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), and Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Kullback–Leibler divergence ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Perturbation (astronomy) ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Mathematics - Analysis of PDEs ,Hartree equation ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Bounded function ,FOS: Mathematics ,Quantum system ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Orthonormal basis ,Mathematical Physics ,Stationary state ,Analysis of PDEs (math.AP) ,Mathematical physics ,Fermi Gamma-ray Space Telescope - Abstract
We show local and global well-posedness results for the Hartree equation $$i\partial_t\gamma=[-\Delta+w*\rho_\gamma,\gamma],$$ where $\gamma$ is a bounded self-adjoint operator on $L^2(\R^d)$, $\rho_\gamma(x)=\gamma(x,x)$ and $w$ is a smooth short-range interaction potential. The initial datum $\gamma(0)$ is assumed to be a perturbation of a translation-invariant state $\gamma_f=f(-\Delta)$ which describes a quantum system with an infinite number of particles, such as the Fermi sea at zero temperature, or the Fermi-Dirac and Bose-Einstein gases at positive temperature. Global well-posedness follows from the conservation of the relative (free) energy of the state $\gamma(t)$, counted relatively to the stationary state $\gamma_f$. We indeed use a general notion of relative entropy, which allows to treat a wide class of stationary states $f(-\Delta)$. Our results are based on a Lieb-Thirring inequality at positive density and on a recent Strichartz inequality for orthonormal functions, which are both due to Frank, Lieb, Seiringer and the first author of this article., Comment: to appear in Comm. Math. Phys
- Published
- 2014
- Full Text
- View/download PDF
45. Dynamical ionization bounds for atoms
- Author
-
Mathieu Lewin, Enno Lenzmann, Mathematisches Institut, University of Basel (Unibas), Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), and CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum dynamics ,ionization bound ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Electron ,01 natural sciences ,81Q05 ,Schrödinger equation ,symbols.namesake ,Mathematics - Analysis of PDEs ,Hartree equation ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,35Q41 ,Ionization ,Quantum mechanics ,0103 physical sciences ,Atom ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Ball (mathematics) ,0101 mathematics ,010306 general physics ,Mathematical Physics ,Mathematics ,Numerical Analysis ,Applied Mathematics ,010102 general mathematics ,Mathematical Physics (math-ph) ,positive commutator ,35Q55 ,Nonlinear system ,81Q10 ,symbols ,RAGE theorem ,Analysis ,Analysis of PDEs (math.AP) - Abstract
International audience; We study the long-time behavior of the 3-dimensional repulsive nonlinear Hartree equation with an external attractive Coulomb potential $-Z/|x|$, which is a nonlinear model for the quantum dynamics of an atom. We show that, after a sufficiently long time, the average number of electrons in any finite ball is always smaller than 4Z (respectively 2Z in the radial case). This is a time-dependent generalization of a celebrated result by E.H. Lieb on the maximum negative ionization of atoms in the stationary case. Our proof involves a novel positive commutator argument (based on the cubic weight $|x|^3$) and our findings are reminiscent of the RAGE theorem. In addition, we prove a similar universal bound on the local kinetic energy. In particular, our main result means that, in a weak sense, any solution is attracted to a bounded set in the energy space, whatever the size of the initial datum. Moreover, we extend our main result to Hartree--Fock theory and to the linear many-body Schrödinger equation for atoms.
- Published
- 2013
- Full Text
- View/download PDF
46. Mean-field models for disordered crystals
- Author
-
Mathieu Lewin, Eric Cancès, and Salma Lahbabi
- Subjects
Density matrix ,Physics ,Condensed matter physics ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Yukawa potential ,Electronic structure ,01 natural sciences ,Mean field theory ,Quantum mechanics ,0103 physical sciences ,Thermodynamic limit ,Supercell (crystal) ,Density functional theory ,0101 mathematics ,010306 general physics ,Ground state - Abstract
In this article, we set up a functional setting for mean-field electronic structure models of Hartree-Fock or Kohn-Sham types for disordered crystals. The electrons are quantum particles and the nuclei are classical point-like articles whose positions and charges are random. We prove the existence of a minimizer of the energy per unit volume and the uniqueness of the ground state density of such disordered crystals, for the reduced Hartree-Fock model (rHF). We consider both (short-range) Yukawa and (long-range) Coulomb interactions. In the former case, we prove in addition that the rHF ground state density matrix satisfies a self-consistent equation, and that our model for disordered crystals is the thermodynamic limit of the supercell model.
- Published
- 2013
- Full Text
- View/download PDF
47. Semi-classical Dirac vacuum polarisation in a scalar field
- Author
-
Jonas Lampart, Mathieu Lewin, Université Paris sciences et lettres (PSL), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Field (physics) ,Dirac's vacuum ,010102 general mathematics ,Dirac (software) ,Scalar Field Analysis ,FOS: Physical sciences ,Order (ring theory) ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Stability (probability) ,General Relativity and Quantum Cosmology ,Vacuum energy ,Homogeneous ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Quantum electrodynamics ,0103 physical sciences ,Limit (mathematics) ,0101 mathematics ,Vacuum polarizarion ,010306 general physics ,Scalar field ,Mathematical Physics - Abstract
We study vacuum polarisation effects of a Dirac field coupled to an external scalar field and derive a semi-classical expansion of the regu-larised vacuum energy. The leading order of this expansion is given by a classical formula due to Chin, Lee-Wick and Walecka, for which our result provides the first rigorous proof. We then discuss applications to the non-relativistic large-coupling limit of an interacting system, and to the stability of homogeneous systems., Revised version to appear in AHP (DOI: 10.1007/s00023-016-0472-y)
- Published
- 2016
- Full Text
- View/download PDF
48. Coulomb potentials and Taylor expansions in Time-Dependent Density Functional Theory
- Author
-
Mathieu Lewin, Thomas Østergaard Sørensen, Jonas Lampart, Søren Fournais, Department of Mathematical [Aarhus], Aarhus University [Aarhus], Université Paris sciences et lettres (PSL), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Mathematisches Institut [München] (LMU), Ludwig-Maximilians-Universität München (LMU), Sapere Aude Grant number DFF--4181-00221, ERC FP7/2007-2013 Grant Agreement MNIQS 258023, European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010), Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,Density-functional theory ,01 natural sciences ,symbols.namesake ,Singularity ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Quantum mechanics ,0103 physical sciences ,Coulomb ,Taylor series ,0101 mathematics ,010306 general physics ,Mathematical Physics ,Mathematical physics ,Physics ,Quantum Physics ,Operator (physics) ,010102 general mathematics ,Time-dependent density functional theory ,Mathematical Physics (math-ph) ,Condensed Matter - Other Condensed Matter ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Inverse problem ,symbols ,Density functional theory ,Constant (mathematics) ,Quantum Physics (quant-ph) ,Taylor expansions for the moments of functions of random variables ,Other Condensed Matter (cond-mat.other) - Abstract
International audience; We investigate when Taylor expansions can be used to prove the Runge-Gross Theorem, which is at the foundation of Time-Dependent Density Functional Theory (TDDFT). We start with a general analysis of the conditions for the Runge-Gross argument, especially the time-differentiability of the density. The latter should be questioned in the presence of singular (e.g. Coulomb) potentials. Then, we show that a singular potential in a one-body operator considerably decreases the class of time-dependent external potentials to which the original argument can be applied. A two-body singularity has an even stronger impact and an external potential is essentially incompatible with it. For the Coulomb interaction and all reasonable initial many-body states, the Taylor expansion only exists to a finite order, except for constant external potentials. Therefore, high-order Taylor expansions are not the right tool to study atoms and molecules in TDDFT.
- Published
- 2016
- Full Text
- View/download PDF
49. Comment on ‘Solutions to quasi-relativistic multi-configurative Hartree–Fock equations in quantum chemistry’, by C. Argaez and M. Melgaard
- Author
-
Mathieu Lewin
- Subjects
Work (thermodynamics) ,Nonlinear system ,Applied Mathematics ,Excited state ,Hartree–Fock method ,Arch ,Mathematical proof ,Quantum chemistry ,Analysis ,Mathematical physics ,Mathematics - Abstract
In a recent paper published in Nonlinear Analysis: Theory, Methods & Applications, Argaez and Melgaard have studied excited states for pseudo-relativistic multi-configuration methods. Their paper follows a previous work of mine in the non-relativistic case [M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Ration. Mech. Anal. 171 (1) (2004) 83–114. doi:10.1007/s00205003-0281-6]. The main results of the paper of Argaez and Melgaard are correct, but the proofs are both wrong and incomplete.
- Published
- 2012
- Full Text
- View/download PDF
50. Gibbs measures based on 1d (an)harmonic oscillators as mean-field limits
- Author
-
Nicolas Rougerie, Mathieu Lewin, Phan Thành Nam, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Department of Mathematics and Statistics, Masaryk University [Brno] (MUNI), Laboratoire de physique et modélisation des milieux condensés (LPM2C), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and ANR-13-JS01-0005,MaThoStaQ,Méthodes mathématiques pour le problème à N corps en mécanique statistique et quantique(2013)
- Subjects
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Measure (mathematics) ,Schrödinger equation ,symbols.namesake ,Mathematics - Analysis of PDEs ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Mathematical Physics ,Harmonic oscillator ,Complement (set theory) ,Physics ,Probability (math.PR) ,010102 general mathematics ,Mathematical analysis ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Sobolev space ,Nonlinear system ,Mean field theory ,symbols ,010307 mathematical physics ,Mathematics - Probability ,Analysis of PDEs (math.AP) - Abstract
We prove that Gibbs measures based on 1D defocusing nonlinear Schr{\"o}dinger functionals with sub-harmonic trapping can be obtained as the mean-field/large temperature limit of the corresponding grand-canonical ensemble for many bosons. The limit measure is supported on Sobolev spaces of negative regularity and the corresponding density matrices are not trace-class. The general proof strategy is that of a previous paper of ours, but we have to complement it with Hilbert-Schmidt estimates on reduced density matrices., Comment: Minor changes and precisions
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.