1. Imaging quality of an artificial intelligence denoising algorithm: validation in 68Ga PSMA-11 PET for patients with biochemical recurrence of prostate cancer
- Author
-
Charles Margail, Charles Merlin, Tommy Billoux, Maxence Wallaert, Hosameldin Otman, Nicolas Sas, Ioana Molnar, Florent Guillemin, Louis Boyer, Laurent Guy, Marion Tempier, Sophie Levesque, Alban Revy, Florent Cachin, and Marion Chanchou
- Subjects
68Ga PSMA-11 ,PET ,Artificial intelligence algorithm ,Biochemical recurrence of prostate cancer ,Image quality ,Denoising ,Medical physics. Medical radiology. Nuclear medicine ,R895-920 - Abstract
Abstract Background 68 Ga-PSMA PET is the leading prostate cancer imaging technique, but the image quality remains noisy and could be further improved using an artificial intelligence-based denoising algorithm. To address this issue, we analyzed the overall quality of reprocessed images compared to standard reconstructions. We also analyzed the diagnostic performances of the different sequences and the impact of the algorithm on lesion intensity and background measures. Methods We retrospectively included 30 patients with biochemical recurrence of prostate cancer who had undergone 68 Ga-PSMA-11 PET-CT. We simulated images produced using only a quarter, half, three-quarters, or all of the acquired data material reprocessed using the SubtlePET® denoising algorithm. Three physicians with different levels of experience blindly analyzed every sequence and then used a 5-level Likert scale to assess the series. The binary criterion of lesion detectability was compared between series. We also compared lesion SUV, background uptake, and diagnostic performances of the series (sensitivity, specificity, accuracy). Results VPFX-derived series were classified differently but better than standard reconstructions (p 0.05). The SubtlePET® algorithm significantly decreased lesion SUV (p
- Published
- 2023
- Full Text
- View/download PDF