Emmanuelle Uro-Coste, Jean-Philippe Hugnot, Ali Saleh, Norbert Bakalara, Philippe Legrand, Willy Morelle, Hugues Duffau, Marcel Delaforge, Marc Lecouvey, Soumaya Turpault, Jean-Luc Pirat, Salim Khiati, Jean-Noël Volle, David Virieux, Jacques Vignon, Zahra Hassani, Séverine Loiseau, Ludovic Clarion, Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Phost'In, Société d’accélération du Transfert de Technologies [Languedoc Roussillon] (AxLR – SaTT), Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Systèmes membranaires, photobiologie, stress et détoxification (SMPSD - UMR 8221), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université d'Angers (UA), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire du Cancer Toulouse - Oncopôle (IUCT), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS)
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and accounts for a significant proportion of all primary brain tumors. Median survival after treatment is around 15 months. Remodeling of N-glycans by the N-acetylglucosamine glycosyltransferase (MGAT5) regulates tumoral development. Here, perturbation of MGAT5 enzymatic activity by the small-molecule inhibitor 3-hydroxy-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl2-oxo-2λ5-[1,2]oxaphosphinane (PST3.1a) restrains GBM growth. In cell-based assays, it is demonstrated that PST3.1a alters the β1,6-GlcNAc N-glycans of GBM-initiating cells (GIC) by inhibiting MGAT5 enzymatic activity, resulting in the inhibition of TGFβR and FAK signaling associated with doublecortin (DCX) upregulation and increase oligodendrocyte lineage transcription factor 2 (OLIG2) expression. PST3.1a thus affects microtubule and microfilament integrity of GBM stem cells, leading to the inhibition of GIC proliferation, migration, invasiveness, and clonogenic capacities. Orthotopic graft models of GIC revealed that PST3.1a treatment leads to a drastic reduction of invasive and proliferative capacity and to an increase in overall survival relative to standard temozolomide therapy. Finally, bioinformatics analyses exposed that PST3.1a cytotoxic activity is positively correlated with the expression of genes of the epithelial–mesenchymal transition (EMT), while the expression of mitochondrial genes correlated negatively with cell sensitivity to the compound. These data demonstrate the relevance of targeting MGAT5, with a novel anti-invasive chemotherapy, to limit glioblastoma stem cell invasion. Mol Cancer Res; 15(10); 1376–87. ©2017 AACR.