Stéphane Boisgard, Cécile Polge, Carole Philipponnet, Lydie Combaret, Julien Aniort, E. Rosset, Daniel Béchet, Odile Burlet-Schiltz, Anne-Elisabeth Heng, Alexandre Stella, A. Poyet, Daniel Taillandier, Didier Attaix, Agnès Claustre, Marc Filaire, Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, Institut de pharmacologie et de biologie structurale (IPBS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Néphrologie, Centre Hospitalier Universitaire (CHU), Unité de Nutrition Humaine - Clermont Auvergne (UNH), Université Clermont Auvergne (UCA)-Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne (UCA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de nutrition cellulaire et moléculaire, Institut National de la Recherche Agronomique (INRA), Institut de Chimie de Clermont-Ferrand - Clermont Auvergne (ICCF), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Sigma CLERMONT (Sigma CLERMONT), CHU Clermont-Ferrand, Service de Chirurgie vasculaire, Unité de nutrition et métabolisme protéique, Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Service d’Orthopédie Traumatologie [CHU Clermont-Ferrand], CHU Gabriel Montpied [Clermont-Ferrand], CHU Clermont-Ferrand-CHU Clermont-Ferrand, Service de Chirurgie Vasculaire, CHU Clermont-Ferrand, Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Service de Chirurgie Orthopédique et Traumatologique Hôpital Gabriel Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Aniort, Julien, Stella, Alexandre, Philipponnet, Carole, Poyet, Anaïs, Polge, Cécile, Claustre, Agnes, Combaret, Lydie, Béchet, Daniel, Attaix, Didier, Boisgard, Stéphane, Rosset, Eugenio, Burlet-Schiltz, Odile, Heng, Anne-Elisabeth, and Taillandier, Daniel
International audience; Background Loss of muscle mass worsens many diseases such as cancer and renal failure, contributes to the frailty syndrome , and is associated with an increased risk of death. Studies conducted on animal models have revealed the preponderant role of muscle proteolysis and in particular the activation of the ubiquitin proteasome system (UPS). Studies conducted in humans remain scarce, especially within renal deficiency. Whether a shared atrophying programme exists independently of the nature of the disease remains to be established. The aim of this work was to identify common modifications at the transcriptomic level or the proteomic level in atrophying skeletal muscles from cancer and renal failure patients. Methods Muscle biopsies were performed during scheduled interventions in early-stage (no treatment and no detectable muscle loss) lung cancer (LC), chronic haemodialysis (HD), or healthy (CT) patients (n = 7 per group; 86% male; 69.6 ± 11.4, 67.9 ± 8.6, and 70.2 ± 7.9 years P > 0.9 for the CT, LC, and HD groups, respectively). Gene expression of members of the UPS, autophagy, and apoptotic systems was measured by quantitative real-time PCR. A global analysis of the soluble muscle proteome was conducted by shotgun proteomics for investigating the processes altered. Results We found an increased expression of several UPS and autophagy-related enzymes in both LC and HD patients. The E3 ligases MuRF1 (+56 to 78%, P < 0.01), MAFbx (+68 to 84%, P = 0.02), Hdm2 (+37 to 59%, P = 0.02), and MUSA1/Fbxo30 (+47 to 106%, P = 0.01) and the autophagy-related genes CTPL (+33 to 47%, P = 0.03) and SQSTM1 (+47 to 137%, P < 0.01) were overexpressed. Mass spectrometry identified >1700 proteins, and principal component analysis revealed three differential proteomes that matched to the three groups of patients. Orthogonal partial least square discriminant analysis created a model, which distinguished the muscles of diseased patients (LC or HD) from those of CT subjects. Proteins that most contributed to the model were selected. Functional analysis revealed up to 238 proteins belonging to nine metabolic processes (inflammatory response, proteolysis, cytoskeleton organization, glucose metabolism, muscle contraction, oxidant detoxifica-tion, energy metabolism, fatty acid metabolism, and extracellular matrix) involved in and/or altered by the atrophying programme in both LC and HD patients. This was confirmed by a co-expression network analysis. Conclusions We were able to identify highly similar modifications of several metabolic pathways in patients exhibiting diseases with different aetiologies (early-stage LC vs. long-term renal failure). This strongly suggests that a common atrophying programme exists independently of the disease in human.