Caubet, Fabien, Dambrine, Marc, Mahadevan, Rajesh, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Facultad de Ciencias Fisicas Y Matematicas, Universidad de Concepcion, Universidad de Concepción [Chile], Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
In this work, we compute the shape derivatives of eigenvalues problem for elliptic operators associated to various boundary conditions, that is Dirichlet, Neumann, Robin, and Wentzell boundary conditions. We also consider the case when the conductivity and the density have jumps, which corresponds to composite structures. The proposed method is based on a result for the derivative of a minimum with respect to a parameter. The main advantage is that the procedure exposed in this work is uniform and efficient with respect to the computations. Indeed, in order to underline this efficiency, we present in the appendix the computation in the case of the mixture of two phases using the classical method based on the material derivative, which turns out to be much more tedious.