Back to Search
Start Over
ON THE FABER-KRAHN INEQUALITY FOR THE DIRICHLET p-LAPLACIAN.
- Source :
-
ESAIM: Control, Optimisation & Calculus of Variations . Jan2015, Vol. 21 Issue 1, p60-72. 13p. - Publication Year :
- 2015
-
Abstract
- A famous conjecture made by Lord Rayleigh is the following: "The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball". This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169- 172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97-100.]. We shall deal with the p-Laplacian version of this theorem. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 12928119
- Volume :
- 21
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- ESAIM: Control, Optimisation & Calculus of Variations
- Publication Type :
- Academic Journal
- Accession number :
- 110620977
- Full Text :
- https://doi.org/10.1051/cocv/2014017