Back to Search Start Over

ON THE FABER-KRAHN INEQUALITY FOR THE DIRICHLET p-LAPLACIAN.

Authors :
CHORWADWALA, ANISA M. H.
MAHADEVAN, RAJESH
TOLEDO, FRANCISCO
Source :
ESAIM: Control, Optimisation & Calculus of Variations. Jan2015, Vol. 21 Issue 1, p60-72. 13p.
Publication Year :
2015

Abstract

A famous conjecture made by Lord Rayleigh is the following: "The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball". This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169- 172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97-100.]. We shall deal with the p-Laplacian version of this theorem. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
12928119
Volume :
21
Issue :
1
Database :
Academic Search Index
Journal :
ESAIM: Control, Optimisation & Calculus of Variations
Publication Type :
Academic Journal
Accession number :
110620977
Full Text :
https://doi.org/10.1051/cocv/2014017