28 results on '"Lopes Ferreira N"'
Search Results
2. Changes in Phenolics Distribution After Chemical Pretreatment and Enzymatic Conversion of Miscanthus × giganteus Internode
- Author
-
Belmokhtar, N., Habrant, A., Lopes Ferreira, N., and Chabbert, B.
- Published
- 2013
- Full Text
- View/download PDF
3. Erratum to: Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling
- Author
-
Máté de Gérando, H., Fayolle-Guichard, F., Rudant, L., Millah, S. K., Monot, F., Lopes Ferreira, N., and López-Contreras, A. M.
- Published
- 2017
- Full Text
- View/download PDF
4. Random or targeted genetic approaches for the production of isopropanol by clostridium beijerinckii DSM6423
- Author
-
Mate De Gerando, H., Wasels, F., Lopez Contreras, Ana, and Lopes Ferreira, N.
- Subjects
BBP Bioconversion ,Life Science ,VLAG - Published
- 2016
5. Kinetic modeling of β-glucosidases and cellobiohydrolases involved in enzymatic hydrolysis of cellulose
- Author
-
CHAUVE, M., Barré, Loïc, Tapin-Lingua, S., DA SILVA-PEREZ, D., Decottignies, D., Perez, S., LOPES FERREIRA, N., inconnu, Inconnu, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), and Carret, Michèle
- Subjects
ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2013
6. Impact of acid and alkali pre-treatment of Miscanthus giganteus on cell- wall lignin and hydroxicinnamic acids in relation to degradation by polysaccharide-active enzymes
- Author
-
Belmokhtar, Nassim, Habrant, Anouck, Lopes-Ferreira, N, Chabbert, Brigitte, Fractionnement des AgroRessources et Environnement (FARE), Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA), and IFP Energies nouvelles (IFPEN)
- Subjects
hydroxicinnamic acids ,[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,[SDE]Environmental Sciences ,lignin ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,pre-treatment ,ComputingMilieux_MISCELLANEOUS ,polysaccharide-active - Abstract
International audience
- Published
- 2011
7. Impact de prétraitements chimiques sur les phénols pariétaux et la saccharification enzymatique de miscanthus
- Author
-
Belmokhtar, Nassim, Habrant, Anouck, Lopes-Ferreira, N., Chabbert, Brigitte, Fractionnement des AgroRessources et Environnement (FARE), Université de Reims Champagne-Ardenne (URCA)-Institut National de la Recherche Agronomique (INRA), and IFP Energies nouvelles (IFPEN)
- Subjects
prétraitement chimique ,saccharification enzymatique ,[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,[SDE]Environmental Sciences ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,ComputingMilieux_MISCELLANEOUS ,phénols pariétaux - Abstract
National audience
- Published
- 2011
8. Changes in Phenolics Distribution After Chemical Pretreatment and Enzymatic Conversion of Miscanthus × giganteus Internode
- Author
-
Belmokhtar, N., primary, Habrant, A., additional, Lopes Ferreira, N., additional, and Chabbert, B., additional
- Published
- 2012
- Full Text
- View/download PDF
9. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw
- Author
-
Billard Hélène, Faraj Abdelaziz, Lopes Ferreira Nicolas, Menir Sandra, and Heiss-Blanquet Senta
- Subjects
Trichoderma reesei ,cellulases ,xylanase ,wheat straw ,enzymatic hydrolysis ,experimental design ,Fuel ,TP315-360 ,Biotechnology ,TP248.13-248.65 - Abstract
Abstract Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.
- Published
- 2012
- Full Text
- View/download PDF
10. Gene essentiality in the solventogenic Clostridium acetobutylicum DSM 792.
- Author
-
Delarouzée A, Lopes Ferreira N, Baum C, and Wasels F
- Subjects
- Clostridium acetobutylicum genetics, Clostridium acetobutylicum metabolism, Acetone metabolism, Ethanol metabolism, Butanols metabolism, Genes, Essential genetics, Fermentation
- Abstract
Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for in vitro development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community., Importance: Clostridium acetobutylicum is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop C. acetobutylicum as a platform organism for the production of chemicals of interest., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
11. Enzymatic breakdown of biofilm matrix to allow flow cytometry viability analysis of Clostridium beijerinckii cells.
- Author
-
Carrié M, Gabelle JC, Lopes-Ferreira N, and Velly H
- Subjects
- Extracellular Polymeric Substance Matrix, Polyurethanes, Flow Cytometry methods, Fermentation, Clostridium beijerinckii
- Abstract
Aims: Flow cytometry (FC) is a good way to enumerate the number of viable cells in suspension but is not adapted to mature biofilm analysis. The aim of this study is to investigate the effect of mechanical treatment coupled with enzymatic hydrolysis of biofilm matrix on FC viability analysis of biofilm cells., Methods and Results: Biofilm was grown for 300 h of continuous fermentation on polyurethane foams. Fermentation was stopped, and the biofilm was detached by agitating the foams in PBS buffer with vortex agitation for 2 min. The best enzymatic hydrolysis consisted of sequential use of DNase I and proteinase K incubated for 1 h at 34°C. Biofilm cells detached from polyurethane foams were stained with both propidium iodide (PI) and carboxyfluoresceine diacetate and analyzed by FC. FC analysis performed after vortex agitation revealed the presence of high non-fluorescent events (78.9% ± 3.3%). After enzymatic treatment, a cell population was extracted from background noise and could be observed on FSC-SSC profile. The non-fluorescent events of this cell population decreased drastically to 41.9% ± 6.6%, and the percentage of viable cells was enhanced from 2.6% ± 0.9% to 38.2% ± 4.0% compared to analysis performed after mechanical treatment alone., Conclusions: Consequently, protease and nuclease activity are essential to hydrolyze extra polymeric substances prior to FC viability analysis in mature biofilm formed by Clostridium beijerinckii., (© The Author(s) 2023. Published by Oxford University Press on behalf of Applied Microbiology International.)
- Published
- 2023
- Full Text
- View/download PDF
12. Alleviation of Carbon Catabolite Repression through araR and xylR Inactivation in Clostridium acetobutylicum DSM 792.
- Author
-
Delarouzée A, Lopes Ferreira N, and Wasels F
- Subjects
- Xylose, Arabinose, Sugars, Glucose, Fermentation, Catabolite Repression, Clostridium acetobutylicum genetics
- Abstract
Efficient bioconversion processes of lignocellulose-derived carbohydrates into chemicals have received increasing interest in the last decades since they represent a promising alternative to petro-based processes. Despite efforts to adapt microorganisms to the use of such substrates, one of their major limitations remains their inability to consume multiple sugars simultaneously. In particular, the solventogenic model organism Clostridium acetobutylicum struggles to efficiently use second generation (2G) substrates because of carbon catabolite repression mechanisms that prevent the assimilation of xylose and arabinose in the presence of glucose. In this study, we addressed this issue by inactivating genes encoding transcriptional repressors involved in such mechanisms in the C. acetobutylicum strain DSM 792. Our results showed that the deletion of the two putative copies of xylR (CA_C2613 and CA_C3673) had little or no effect on the ability of the strain to consume xylose. Unlikely, the deletion of araR (CA_C1340) led to a 2.5-fold growth rate increase on xylose. The deletion of both araR and xylR genes resulted in the coassimilation of arabinose together with glucose, while xylose consumption remained inefficient. Transcriptional analyses of the wild-type strain and mutants grown on glucose, arabinose, xylose, and combinations of them provided a crucial, global overview of regulations triggered by the products of both araR and xylR in C. acetobutylicum. As suggested by these data, overexpression of xylA and xylB led to further improvement of pentose assimilation. Those results represent a step forward in the development of genetically modified strains of C. acetobutylicum able to coassimilate lignocellulosic-derived sugars. IMPORTANCE C. acetobutylicum is a strong candidate to produce chemicals of interest such as C3 and C4 alcohols. Used for more than a century for its capacity to produce a mixture of acetone, butanol, and ethanol from first generation (1G) substrates, its natural ability to assimilate a wide variety of monoosides also predisposes it as an auspicious organism for the valorization of lignocellulose-derived sugar mixtures. To achieve this purpose, a better understanding of carbon catabolite repression mechanisms is essential. The work done here provides critical knowledge on how these mechanisms occur during growth on glucose, arabinose, and xylose mixtures, as well as strategies to tackle them.
- Published
- 2023
- Full Text
- View/download PDF
13. Genome-Wide TSS Distribution in Three Related Clostridia with Normalized Capp-Switch Sequencing.
- Author
-
Hocq R, Jagtap S, Boutard M, Tolonen AC, Duval L, Pirayre A, Lopes Ferreira N, and Wasels F
- Subjects
- Bacteria, Anaerobic, Butanols metabolism, Clostridium genetics, Clostridium metabolism, Fermentation, Acetone metabolism, Clostridium acetobutylicum genetics, Clostridium acetobutylicum metabolism
- Abstract
Transcription initiation is a tightly regulated process that is crucial for many aspects of prokaryotic physiology. High-throughput transcription start site (TSS) mapping can shed light on global and local regulation of transcription initiation, which in turn may help us understand and predict microbial behavior. In this study, we used Capp-Switch sequencing to determine the TSS positions in the genomes of three model solventogenic clostridia: Clostridium acetobutylicum ATCC 824, C. beijerinckii DSM 6423, and C. beijerinckii NCIMB 8052. We first refined the approach by implementing a normalization pipeline accounting for gene expression, yielding a total of 12,114 mapped TSSs across the species. We further compared the distributions of these sites in the three strains. Results indicated similar distribution patterns at the genome scale, but also some sharp differences, such as for the butyryl-CoA synthesis operon, particularly when comparing C. acetobutylicum to the C. beijerinckii strains. Lastly, we found that promoter structure is generally poorly conserved between C. acetobutylicum and C. beijerinckii. A few conserved promoters across species are discussed, showing interesting examples of how TSS determination and comparison can improve our understanding of gene expression regulation at the transcript level. IMPORTANCE Solventogenic clostridia have been employed in industry for more than a century, initially being used in the acetone-butanol-ethanol (ABE) fermentation process for acetone and butanol production. Interest in these bacteria has recently increased in the context of green chemistry and sustainable development. However, our current understanding of their genomes and physiology limits their optimal use as industrial solvent production platforms. The gene regulatory mechanisms of solventogenesis are still only partly understood, impeding efforts to increase rates and yields. Genome-wide mapping of transcription start sites (TSSs) for three model solventogenic Clostridium strains is an important step toward understanding mechanisms of gene regulation in these industrially important bacteria.
- Published
- 2022
- Full Text
- View/download PDF
14. A CRISPR/Anti-CRISPR Genome Editing Approach Underlines the Synergy of Butanol Dehydrogenases in Clostridium acetobutylicum DSM 792.
- Author
-
Wasels F, Chartier G, Hocq R, and Lopes Ferreira N
- Subjects
- Alcohol Oxidoreductases metabolism, Bacterial Proteins metabolism, Clostridium acetobutylicum enzymology, Gene Editing, Alcohol Oxidoreductases genetics, Bacterial Proteins genetics, CRISPR-Cas Systems genetics, Clostridium acetobutylicum genetics
- Abstract
Although Clostridium acetobutylicum is the model organism for the study of acetone-butanol-ethanol (ABE) fermentation, its characterization has long been impeded by the lack of efficient genome editing tools. In particular, the contribution of alcohol dehydrogenases to solventogenesis in this bacterium has mostly been studied with the generation of single-gene deletion strains. In this study, the three butanol dehydrogenase-encoding genes located on the chromosome of the DSM 792 reference strain were deleted iteratively by using a recently developed CRISPR-Cas9 tool improved by using an anti-CRISPR protein-encoding gene, acrIIA4 Although the literature has previously shown that inactivation of either bdhA , bdhB , or bdhC had only moderate effects on the strain, this study shows that clean deletion of both bdhA and bdhB strongly impaired solvent production and that a triple mutant Δ bdhA Δ bdhB Δ bdhC was even more affected. Complementation experiments confirmed the key role of these enzymes and the capacity of each bdh copy to fully restore efficient ABE fermentation in the triple deletion strain. IMPORTANCE An efficient CRISPR-Cas9 editing tool based on a previous two-plasmid system was developed for Clostridium acetobutylicum and used to investigate the contribution of chromosomal butanol dehydrogenase genes during solventogenesis. Thanks to the control of cas9 expression by inducible promoters and of Cas9-guide RNA (gRNA) complex activity by an anti-CRISPR protein, this genetic tool allows relatively fast, precise, markerless, and iterative modifications in the genome of this bacterium and potentially of other bacterial species. As an example, scarless mutants in which up to three genes coding for alcohol dehydrogenases are inactivated were then constructed and characterized through fermentation assays. The results obtained show that in C. acetobutylicum , other enzymes than the well-known AdhE1 are crucial for the synthesis of alcohol and, more globally, to perform efficient solventogenesis., (Copyright © 2020 American Society for Microbiology.)
- Published
- 2020
- Full Text
- View/download PDF
15. σ 54 (σ L ) plays a central role in carbon metabolism in the industrially relevant Clostridium beijerinckii.
- Author
-
Hocq R, Bouilloux-Lafont M, Lopes Ferreira N, and Wasels F
- Subjects
- 2-Propanol metabolism, Bacterial Proteins genetics, Butanols metabolism, CRISPR-Cas Systems genetics, Clostridium beijerinckii genetics, Ethanol metabolism, Gene Editing methods, Glucose metabolism, Phenotype, Point Mutation, Sigma Factor deficiency, Sigma Factor genetics, Solvents metabolism, Bacterial Proteins metabolism, Carbon metabolism, Clostridium beijerinckii metabolism, Sigma Factor metabolism
- Abstract
The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ
54 sigma factor. Complementation with wild-type sigL fully restored solvent production and sugar assimilation and RT-qPCR analyses revealed its transcriptional control of several genes related to solventogensis, demonstrating the central role of σ54 in C. beijerinckii DSM 6423. Comparative genomics analysis suggested that this function is conserved at the species level, and this hypothesis was further confirmed through the deletion of sigL in the model strain C. beijerinckii NCIMB 8052.- Published
- 2019
- Full Text
- View/download PDF
16. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423.
- Author
-
Máté de Gérando H, Wasels F, Bisson A, Clement B, Bidard F, Jourdier E, López-Contreras AM, and Lopes Ferreira N
- Subjects
- Bioreactors microbiology, Clostridium beijerinckii metabolism, Clostridium beijerinckii physiology, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Sequence Analysis, RNA, Spores, Bacterial genetics, Spores, Bacterial metabolism, 2-Propanol metabolism, Clostridium beijerinckii genetics, Genome, Bacterial, Transcriptome
- Abstract
Background: There is a worldwide interest for sustainable and environmentally-friendly ways to produce fuels and chemicals from renewable resources. Among them, the production of acetone, butanol and ethanol (ABE) or Isopropanol, Butanol and Ethanol (IBE) by anaerobic fermentation has already a long industrial history. Isopropanol has recently received a specific interest and the best studied natural isopropanol producer is C. beijerinckii DSM 6423 (NRRL B-593). This strain metabolizes sugars into a mix of IBE with only low concentrations of ethanol produced (< 1 g/L). However, despite its relative ancient discovery, few genomic details have been described for this strain. Research efforts including omics and genetic engineering approaches are therefore needed to enable the use of C. beijerinckii as a microbial cell factory for production of isopropanol., Results: The complete genome sequence and a first transcriptome analysis of C. beijerinckii DSM 6423 are described in this manuscript. The combination of MiSeq and de novo PacBio sequencing revealed a 6.38 Mbp chromosome containing 6254 genomic objects. Three Mobile Genetic Elements (MGE) were also detected: a linear double stranded DNA bacteriophage (ϕ6423) and two plasmids (pNF1 and pNF2) highlighting the genomic complexity of this strain. A first RNA-seq transcriptomic study was then performed on 3 independent glucose fermentations. Clustering analysis allowed us to detect some key gene clusters involved in the main life cycle steps (acidogenesis, solvantogenesis and sporulation) and differentially regulated among the fermentation. These putative clusters included some putative metabolic operons comparable to those found in other reference strains such as C. beijerinckii NCIMB 8052 or C. acetobutylicum ATCC 824. Interestingly, only one gene was encoding for an alcohol dehydrogenase converting acetone into isopropanol, suggesting a single genomic event occurred on this strain to produce isopropanol., Conclusions: We present the full genome sequence of Clostridium beijerinckii DSM 6423, providing a complete genetic background of this strain. This offer a great opportunity for the development of dedicated genetic tools currently lacking for this strain. Moreover, a first RNA-seq analysis allow us to better understand the global metabolism of this natural isopropanol producer, opening the door to future targeted engineering approaches.
- Published
- 2018
- Full Text
- View/download PDF
17. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
- Author
-
Wasels F, Jean-Marie J, Collas F, López-Contreras AM, and Lopes Ferreira N
- Subjects
- Bacterial Proteins genetics, Clostridium acetobutylicum metabolism, Gene Deletion, Metabolic Engineering, Mutagenesis, Insertional, Plasmids, CRISPR-Cas Systems genetics, Clostridium acetobutylicum genetics, Gene Editing methods, Genetic Engineering methods
- Abstract
CRISPR/Cas-based genetic engineering has revolutionised molecular biology in both eukaryotes and prokaryotes. Several tools dedicated to the genomic transformation of the Clostridium genus of Gram-positive bacteria have been described in the literature; however, the integration of large DNA fragments still remains relatively limited. In this study, a CRISPR/Cas9 genome editing tool using a two-plasmid strategy was developed for the solventogenic strain Clostridium acetobutylicum ATCC 824. Codon-optimised cas9 from Streptococcus pyogenes was placed under the control of an anhydrotetracycline-inducible promoter on one plasmid, while the gRNA expression cassettes and editing templates were located on a second plasmid. Through the sequential introduction of these vectors into the cell, we achieved highly accurate genome modifications, including nucleotide substitution, gene deletion and cassette insertion up to 3.6kb. To demonstrate its potential, this genome editing tool was used to generate a marker-free mutant of ATCC 824 that produced an isopropanol-butanol-ethanol mixture. Whole-genome sequencing confirmed that no off-target modifications were present in the mutants. Such a tool is a prerequisite for efficient metabolic engineering in this solventogenic strain and provides an alternative editing strategy that might be applicable to other Clostridium strains., (Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
18. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.
- Author
-
Gérando HM, Fayolle-Guichard F, Rudant L, Millah SK, Monot F, Lopes Ferreira N, and López-Contreras AM
- Subjects
- 2-Propanol isolation & purification, Bioreactors, Clostridium beijerinckii isolation & purification, Drug Tolerance, Fermentation, Genetic Engineering methods, Solvents, 2-Propanol pharmacology, Clostridium beijerinckii drug effects, Clostridium beijerinckii genetics, Clostridium beijerinckii metabolism, DNA Shuffling, Mutagenesis
- Abstract
Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.
- Published
- 2016
- Full Text
- View/download PDF
19. Mechanistic modeling of enzymatic hydrolysis of cellulose integrating substrate morphology and cocktail composition.
- Author
-
Huron M, Hudebine D, Lopes Ferreira N, and Lachenal D
- Subjects
- Aspergillus niger metabolism, Computer Simulation, Hydrolysis, Kinetics, Models, Biological, Substrate Specificity, Trichoderma metabolism, Aspergillus niger enzymology, Cellulases metabolism, Cellulose metabolism, Cellulose 1,4-beta-Cellobiosidase metabolism, Trichoderma enzymology
- Abstract
A mechanistic model of enzymatic hydrolysis taking into account the morphology of the cellulosic particles and its evolution with time was developed. The individual behavior of the main enzymes involved in the reaction (cellobiohydrolases, endoglucanases, and β-glucosidases), as well as synergy effects, were also included. A large panel of experimental tests was done to fit and validate the model. This database included different enzymes mixtures and operating conditions and allowed to determine and compare with accuracy the adsorption and kinetic parameters of the different enzymes. Model predictions on short hydrolysis times were very satisfactory. On longer times, a deactivation constant was added to represent the hydrolysis slowdown. The model also allowed to predict the impact of enzymes ratios and initial substrate parameters (chain length distribution, polymerization degree) on hydrolysis, and to follow the evolution of these parameters with time. This model revealed general trends on the impact of cellulose morphology on hydrolysis. It is a useful tool to better understand the mechanisms involved in enzymatic hydrolysis of cellulose and to determine optimal cellulolytic cocktails for process design., (© 2015 Wiley Periodicals, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
20. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923).
- Author
-
Wasels F, Clément B, and Lopes Ferreira N
- Abstract
Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain., (Copyright © 2016 Wasels et al.)
- Published
- 2016
- Full Text
- View/download PDF
21. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption.
- Author
-
Heiss-Blanquet S, Zheng D, Lopes Ferreira N, Lapierre C, and Baumberger S
- Subjects
- Adsorption, Cellulose chemistry, Hydrolysis, Surface Properties, Trichoderma enzymology, Wettability, Cell Wall chemistry, Cellulase chemistry, Triticum
- Abstract
The present study aimed to determine the impact of cell wall composition and lignin content on enzyme adsorption and degradability. Thioacidolysis analysis of residual lignins in wheat straw after steam-explosion or organosolv pretreatment revealed an increase in lignin condensation degree of 27% and 33%, respectively. Surface hydrophobicity assessed through wettability tests decreased after the pretreatments (contact angle decrease of 20-50%), but increased with enzymatic conversion (30% maximum contact angle increase) and correlatively to lignin content. Adsorption of the three major cellulases Cel7A, Cel6A and Cel7B from Trichoderma reesei decreased with increasing hydrolysis time, down to 7%, 31% and 70% on the sample with the highest lignin content, respectively. The fraction of unspecifically bound enzymes was dependent both on the enzyme and the lignin content. Adsorption and specific activity were shown to be inversely proportional to lignin content and hydrophobicity, suggesting that lignin is one of the factors restricting enzymatic hydrolysis., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
22. Comparative kinetic analysis of two fungal beta-glucosidases.
- Author
-
Chauve M, Mathis H, Huc D, Casanave D, Monot F, and Lopes Ferreira N
- Abstract
Background: The enzymatic hydrolysis of cellulose is still considered as one of the main limiting steps of the biological production of biofuels from lignocellulosic biomass. It is a complex multistep process, and various kinetic models have been proposed. The cellulase enzymatic cocktail secreted by Trichoderma reesei has been intensively investigated. beta-glucosidases are one of a number of cellulolytic enzymes, and catalyze the last step releasing glucose from the inhibitory cellobiose. beta-glucosidase (BGL1) is very poorly secreted by Trichoderma reesei strains, and complete hydrolysis of cellulose often requires supplementation with a commercial beta-glucosidase preparation such as that from Aspergillus niger (Novozymes SP188). Surprisingly, kinetic modeling of beta-glucosidases lacks reliable data, and the possible differences between native T. reesei and supplemented beta-glucosidases are not taken into consideration, possibly because of the difficulty of purifying BGL1., Results: A comparative kinetic analysis of beta-glucosidase from Aspergillus niger and BGL1 from Trichoderma reesei, purified using a new and efficient fast protein liquid chromatography protocol, was performed. This purification is characterized by two major steps, including the adsorption of the major cellulases onto crystalline cellulose, and a final purification factor of 53. Quantitative analysis of the resulting beta-glucosidase fraction from T. reesei showed it to be 95% pure. Kinetic parameters were determined using cellobiose and a chromogenic artificial substrate. A new method allowing easy and rapid determination of the kinetic parameters was also developed. beta-Glucosidase SP188 (Km = 0.57 mM; Kp = 2.70 mM) has a lower specific activity than BGL1 (Km = 0.38 mM; Kp = 3.25 mM) and is also more sensitive to glucose inhibition. A Michaelis-Menten model integrating competitive inhibition by the product (glucose) has been validated and is able to predict the beta-glucosidase activity of both enzymes., Conclusions: This article provides a useful comparison between the activity of beta-glucosidases from two different fungi, and shows the importance of fully characterizing both enzymes. A Michaelis-Menten model was developed, including glucose inhibition and kinetic parameters, which were accurately determined and compared. This model can be further integrated into a cellulose hydrolysis model dissociating beta-glucosidase activity from that of other cellulases. It can also help to define the optimal enzymatic cocktails for new beta-glucosidase activities.
- Published
- 2010
- Full Text
- View/download PDF
23. Use of Mycobacterium austroafricanum IFP 2012 in a MTBE-degrading bioreactor.
- Author
-
Maciel H, Mathis H, Lopes Ferreira N, Lyew D, Guiot S, Monot F, Greer CW, and Fayolle-Guichard F
- Subjects
- 2-Propanol metabolism, Biomass, Gasoline, Mycobacterium classification, Water Pollutants, Chemical metabolism, Bioreactors, Biotechnology, Methyl Ethers metabolism, Mycobacterium metabolism
- Abstract
Mycobacterium austroafricanum IFP 2012 is able to slowly grow on methyl tert-butyl ether (MTBE), a fuel oxygenate widely used as a gasoline additive. The potential of M. austroafricanum IFP 2012 for aerobic MTBE degradation was investigated in the presence of a secondary carbon source, isopropanol. The strain was then tested for MTBE biodegradation at the laboratory-scale in a fixed-bed reactor using perlite as the matrix, and isopropanol was injected once a week to maintain M. austroafricanum IFP 2012 biomass inside the perlite bed. The biofilter was operated for 85 days at an influent flow rate of 20 ml/h by varying the MTBE concentration from 10 to 20 mg/l. The hydraulic retention time was fixed at 5 days. The removal of MTBE depended on the inlet MTBE concentration and a MTBE removal efficiency higher than 99% was obtained for MTBE concentrations up to 15 mg/l. A set of 16S rRNA gene primers specific for M. austroafricanum species was used to analyze the DNA extracted from the biofilter effluent in order to detect the presence of M. austroafricanum IFP 2012 and to estimate the effect of periodic injections of isopropanol on the release of the strain from the perlite bed. The results demonstrated that the injection of isopropanol served to maintain an active MTBE degrading biomass in the biofilter and that this system could be used to effectively treat MTBE contaminated groundwater., (Copyright 2008 S. Karger AG, Basel.)
- Published
- 2008
- Full Text
- View/download PDF
24. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].
- Author
-
Lopes Ferreira N
- Subjects
- Biomass, Carbohydrate Sequence, Cellobiose metabolism, Cellulases metabolism, Crops, Agricultural, Enzymes metabolism, Fungal Proteins metabolism, Lignin metabolism, Molecular Sequence Data, Plant Preparations, Substrate Specificity, Trichoderma enzymology, Waste Products, Biological Products isolation & purification, Biotechnology methods, Chemical Industry methods, Conservation of Natural Resources trends, Energy-Generating Resources, Ethanol isolation & purification, Industrial Microbiology methods
- Abstract
Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals.
- Published
- 2008
- Full Text
- View/download PDF
25. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.
- Author
-
Lopes Ferreira N, Mathis H, Labbé D, Monot F, Greer CW, and Fayolle-Guichard F
- Subjects
- Amino Acid Sequence, Bacterial Proteins genetics, Bacterial Proteins metabolism, Biodegradation, Environmental, DNA, Bacterial genetics, DNA, Ribosomal genetics, Gene Expression, Genome, Bacterial, Mixed Function Oxygenases genetics, Molecular Sequence Data, Mycobacterium classification, Mycobacterium genetics, Mycobacterium growth & development, Oxidation-Reduction, Phylogeny, RNA, Ribosomal, 16S genetics, Sequence Alignment, Alkanes metabolism, Mixed Function Oxygenases metabolism, Mycobacterium metabolism, tert-Butyl Alcohol metabolism
- Abstract
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.
- Published
- 2007
- Full Text
- View/download PDF
26. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE).
- Author
-
Lopes Ferreira N, Malandain C, and Fayolle-Guichard F
- Subjects
- Bacteria, Aerobic classification, Bacteria, Aerobic genetics, Biodegradation, Environmental, Methyl Ethers chemistry, Models, Chemical, Molecular Structure, Phylogeny, Bacteria, Aerobic metabolism, Methyl Ethers metabolism
- Abstract
Fuel oxygenates, mainly methyl tert-butyl ether (MTBE) but also ethyl tert-butyl ether (ETBE), are added to gasoline in replacement of lead tetraethyl to enhance its octane index. Their addition also improves the combustion efficiency and therefore decreases the emission of pollutants (CO and hydrocarbons). On the other hand, MTBE, being highly soluble in water and recalcitrant to biodegradation, is a major pollutant of water in aquifers contaminated by MTBE-supplemented gasoline during accidental release. MTBE was shown to be degraded through cometabolic oxidation or to be used as a carbon and energy source by a few microorganisms. We have summarized the present state of knowledge about the microorganisms involved in MTBE degradation and the MTBE catabolic pathways. The role of the different enzymes is discussed as well as the rare and recent data concerning the genes encoding the enzymes involved in the MTBE pathway. The phylogeny of the microorganisms isolated for their capacity to grow on MTBE is also described.
- Published
- 2006
- Full Text
- View/download PDF
27. Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE.
- Author
-
Lopes Ferreira N, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, and Greer CW
- Subjects
- Bacterial Proteins genetics, Chaperonin 60, Chaperonins genetics, Culture Media, DNA, Bacterial analysis, DNA, Ribosomal analysis, Fresh Water chemistry, Molecular Sequence Data, Mycobacterium classification, Mycobacterium genetics, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Fresh Water microbiology, Gasoline, Methyl Ethers metabolism, Mycobacterium growth & development, Mycobacterium isolation & purification, Water Pollutants, Chemical metabolism
- Abstract
A new Mycobacterium austroafricanum strain, IFP 2015, growing on methyl tert-butyl ether (MTBE) as a sole carbon source was isolated from an MTBE-degrading microcosm inoculated with drain water of an MTBE-supplemented gasoline storage tank. M. austroafricanum IFP 2015 was able to grow on tert-butyl formate, tert-butyl alcohol (TBA) and alpha-hydroxyisobutyrate. 2-Methyl-1,2-propanediol was identified as the TBA oxidation product in M. austroafricanum IFP 2015 and in the previously isolated M. austroafricanum IFP 2012. M. austroafricanum IFP 2015 also degraded ethyl tert-butyl ether more rapidly than M. austroafricanum IFP 2012. Specific primers designed to monitor the presence of M. austroafricanum strains could be used as molecular tools to detect similar strains in MTBE-contaminated environment.
- Published
- 2006
- Full Text
- View/download PDF
28. The DnaK chaperone is necessary for alpha-complementation of beta-galactosidase in Escherichia coli.
- Author
-
Lopes Ferreira N and Alix JH
- Subjects
- Amino Acid Sequence, Genetic Complementation Test, Immunoblotting, Molecular Sequence Data, Escherichia coli enzymology, Escherichia coli Proteins physiology, HSP70 Heat-Shock Proteins physiology, beta-Galactosidase genetics
- Abstract
We show here the involvement of the molecular chaperone DnaK from Escherichia coli in the in vivo alpha-complementation of the beta-galactosidase. In the dnaK756(Ts) mutant, alpha-complementation occurs when the organisms are grown at 30 degrees C but not at 37 or 40 degrees C, although these temperatures are permissive for bacterial growth. Plasmid-driven expression of wild-type dnaK restores the alpha-complementation in the mutant but also stimulates it in a dnaK(+) strain. In a mutant which contains a disrupted dnaK gene (DeltadnaK52::Cm(r)), alpha-complementation is also impaired, even at 30 degrees C. This observation provides an easy and original phenotype to detect subtle functional changes in a protein such as the DnaK756 chaperone, within the physiologically relevant temperature.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.