Jean-Paul Baluteau, Matthew Joseph Griffin, R. Hopwood, Andreas Papageorgiou, Edward Polehampton, David A. Naylor, S. Guest, P. Imhof, Chris Pearson, Ivan Valtchanov, Nanyao Lu, Liding Zhang, Bruce Swinyard, G. Mainetti, Trevor Fulton, T. L. Lim, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), School of Physics and Astronomy [Cardiff], Cardiff University, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS), Oschmann, Jacobus M., Jr., de Graauw, Mattheus W. M., and MacEwen, Howard A.
International audience; We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer. The pipeline processes telemetry from SPIRE point source, jiggle- and raster-map observations, producing calibrated spectra in low-, medium-, high-, and mixed low- and highresolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer pipeline, including the conversion of telemetry packets into data timelines and the calculation of bolometer voltages from the raw telemetry. We present the following fundamental processing steps unique to the spectrometer: temporal and spatial interpolation of the stage mechanism and detector data to create interferograms; apodization; Fourier transform, and creation of a hyperspectral data cube. We also describe the corrections for various instrumental effects including first- and secondlevel glitch identification and removal, correction of the effects due to the Herschel primary mirror and the spectrometer calibrator, interferogram baseline correction, channel fringe correction, temporal and spatial phase correction, non-linear response of the bolometers, variation of instrument performance across the focal plane arrays, and variation of spectral efficiency. Astronomical calibration is based on combinations of observations of standard astronomical sources and regions of space known to contain minimal emission.