1. On the Bargmann invariants for quantum imaginarity
- Author
-
Li, Mao-Sheng and Tan, Yi-Xi
- Subjects
Quantum Physics - Abstract
The imaginary in quantum theory plays a crucial role in describing quantum coherence and is widely applied in quantum information tasks such as state discrimination, pseudorandomness generation, and quantum metrology. A recent paper by Fernandes et al. [C. Fernandes, R. Wagner, L. Novo, and E. F. Galv\~ao, Phys. Rev. Lett. 133, 190201 (2024) ] showed how to use the Bargmann invariant to witness the imaginarity of a set of quantum states. In this work, we delve into the structure of Bargmann invariants and their quantum realization in qubit systems. First, we present a characterization of special sets of Bargmann invariants (also studied by Fernandes et al. for a set of four states) for a general set of $n$ quantum states. Then, we study the properties of the relevant Bargmann invariant set $\mathcal{B}_n$ and its quantum realization in qubit systems. Our results provide new insights into the structure of Bargmann invariants, contributing to the advancement of quantum information techniques, particularly within qubit systems., Comment: 11 pages, 4 figures
- Published
- 2024