Back to Search Start Over

Unextendible maximally entangled bases in dxd

Authors :
Wang, Yan-Ling
Li, Mao-Sheng
Fei, Shao-Ming
Source :
Physical Review A 90, 034301 (2014)
Publication Year :
2014

Abstract

We investigate the unextendible maximally entangled bases in $\mathbb{C}^{d}\bigotimes\mathbb{C}^{d}$ and present a $30$-number UMEB construction in $\mathbb{C}^{6}\bigotimes\mathbb{C}^{6}$. For higher dimensional case, we show that for a given $N$-number UMEB in $\mathbb{C}^{d}\bigotimes\mathbb{C}^{d}$, there is a $\widetilde{N}$-number, $\widetilde{N}=(qd)^2-(d^2-N)$, UMEB in $\mathbb{C}^{qd}\bigotimes\mathbb{C}^{qd}$ for any $q\in\mathbb{N}$. As an example, for $\mathbb{C}^{12n}\bigotimes\mathbb{C}^{12n}$ systems, we show that there are at least two sets of UMEBs which are not equivalent.<br />Comment: Errors corrected

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Journal :
Physical Review A 90, 034301 (2014)
Publication Type :
Report
Accession number :
edsarx.1409.5019
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.90.034301