Back to Search
Start Over
Unextendible maximally entangled bases in dxd
- Source :
- Physical Review A 90, 034301 (2014)
- Publication Year :
- 2014
-
Abstract
- We investigate the unextendible maximally entangled bases in $\mathbb{C}^{d}\bigotimes\mathbb{C}^{d}$ and present a $30$-number UMEB construction in $\mathbb{C}^{6}\bigotimes\mathbb{C}^{6}$. For higher dimensional case, we show that for a given $N$-number UMEB in $\mathbb{C}^{d}\bigotimes\mathbb{C}^{d}$, there is a $\widetilde{N}$-number, $\widetilde{N}=(qd)^2-(d^2-N)$, UMEB in $\mathbb{C}^{qd}\bigotimes\mathbb{C}^{qd}$ for any $q\in\mathbb{N}$. As an example, for $\mathbb{C}^{12n}\bigotimes\mathbb{C}^{12n}$ systems, we show that there are at least two sets of UMEBs which are not equivalent.<br />Comment: Errors corrected
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Journal :
- Physical Review A 90, 034301 (2014)
- Publication Type :
- Report
- Accession number :
- edsarx.1409.5019
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevA.90.034301