48 results on '"Laurent Chavatte"'
Search Results
2. A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA[Ser]Sec Gene
- Author
-
Caroline Vindry, Olivia Guillin, Philippe E. Mangeot, Théophile Ohlmann, and Laurent Chavatte
- Subjects
selenium ,selenocysteine ,selenoprotein ,SECIS ,Sec-tRNA[Ser]Sec ,UGA-recoding ,CRISPR-Cas9 ,viral-like particles ,nanoblades ,Cytology ,QH573-671 - Abstract
The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3′ UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.
- Published
- 2019
- Full Text
- View/download PDF
3. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure.
- Author
-
Marlène Dezest, Anne-Laure Bulteau, Damien Quinton, Laurent Chavatte, Mickael Le Bechec, Jean Pierre Cambus, Stéphane Arbault, Anne Nègre-Salvayre, Franck Clément, and Sarah Cousty
- Subjects
Medicine ,Science - Abstract
Cold atmospheric pressure plasmas (CAPPs) are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS) are not the only actors involved in E. coli's death, electrical field and charged particles could play a significant role especially for He-O2 CAPP.
- Published
- 2017
- Full Text
- View/download PDF
4. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach
- Author
-
Ghania Hammad, Yona Legrain, Zahia Touat-Hamici, Stéphane Duhieu, David Cornu, Anne-Laure Bulteau, and Laurent Chavatte
- Subjects
proteomics ,2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) ,selenium ,protein abundance ,selenoprotein ,replicative senescence ,WI-38 cells ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.
- Published
- 2018
- Full Text
- View/download PDF
5. A homozygous mutation in the human selenocysteine tRNA gene impairs UGA recoding activity and selenoproteome regulation by selenium
- Author
-
Caroline Vindry, Olivia Guillin, Philippe Wolff, Paul Marie, Franck Mortreux, Philippe E Mangeot, Théophile Ohlmann, Laurent Chavatte, Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), and Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Genetics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology - Abstract
The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.
- Published
- 2023
- Full Text
- View/download PDF
6. Interplay between Selenium, Selenoproteins and HIV-1 Replication in Human CD4 T-Lymphocytes
- Author
-
Olivia M. Guillin, Caroline Vindry, Théophile Ohlmann, Laurent Chavatte, Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Chavatte, Laurent
- Subjects
CD4-Positive T-Lymphocytes ,QH301-705.5 ,[SDV]Life Sciences [q-bio] ,primary T cells ,HIV Infections ,Virus Replication ,Catalysis ,Antioxidants ,Inorganic Chemistry ,selenoproteome ,HIV-1 ,viral infection ,glutathione peroxidase ,thioredoxin reductase ,SELENOS ,SELENOO ,Jurkat ,SupT1 ,translational control ,Jurkat Cells ,Selenium ,Cell Line, Tumor ,Humans ,Physical and Theoretical Chemistry ,Biology (General) ,Selenoproteins ,Molecular Biology ,QD1-999 ,Spectroscopy ,Acquired Immunodeficiency Syndrome ,Glutathione Peroxidase ,Organic Chemistry ,General Medicine ,Computer Science Applications ,[SDV] Life Sciences [q-bio] ,Chemistry ,Oxidative Stress ,HEK293 Cells - Abstract
International audience; The infection of CD4 T-lymphocytes with human immunodeficiency virus (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), disrupts cellular homeostasis, increases oxidative stress and interferes with micronutrient metabolism. Viral replication simultaneously increases the demand for micronutrients and causes their loss, as for selenium (Se). In HIV-infected patients, selenium deficiency was associated with a lower CD4 T-cell count and a shorter life expectancy. Selenium has an important role in antioxidant defense, redox signaling and redox homeostasis, and most of these biological activities are mediated by its incorporation in an essential family of redox enzymes, namely the selenoproteins. Here, we have investigated how selenium and selenoproteins interplay with HIV infection in different cellular models of human CD4 T lymphocytes derived from established cell lines (Jurkat and SupT1) and isolated primary CD4 T cells. First, we characterized the expression of the selenoproteome in various human T-cell models and found it tightly regulated by the selenium level of the culture media, which was in agreement with reports from non-immune cells. Then, we showed that selenium had no significant effect on HIV-1 protein production nor on infectivity, but slightly reduced the percentage of infected cells in a Jurkat cell line and isolated primary CD4 T cells. Finally, in response to HIV-1 infection, the selenoproteome was slightly altered.
- Published
- 2021
- Full Text
- View/download PDF
7. Selective up-regulation of human selenoproteins in response to oxidative stress: P13
- Author
-
Zahia, Touat-Hamici, Yona, Legrain, Anne-Laure, Bulteau, and Laurent, Chavatte
- Published
- 2014
- Full Text
- View/download PDF
8. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts: P12
- Author
-
Yona, Legrain, Zahia, Touat-Hamici, and Laurent, Chavatte
- Published
- 2014
- Full Text
- View/download PDF
9. Oxidative damage and impairment of protein quality control systems in keratinocytes exposed to a volatile organic compounds cocktail
- Author
-
Anne-Laure Bulteau, Sylvianne Schnebert, Carine Nizard, Marlène Dezest, Jean-Louis Grolleau, Mickael Le Bechec, Valérie Desauziers, Laurent Chavatte, Benoît. Chaput, Pascal Descargues, Sylvie Lacombe, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Pôle RIME - Recherche sur les Interactions des Matériaux avec leur Environnement (RIME), Centre des Matériaux des Mines d'Alès (C2MA), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre Hospitalier Universitaire de Rangueil, Chirurgie plastique, CHU Toulouse [Toulouse]-Hôpital de Rangueil, CHU Toulouse [Toulouse], Genoskin Toulouse (Genoskin), LVMH Recherche, and LVMH Moët Hennessy Louis Vuitton
- Subjects
Keratinocytes ,0301 basic medicine ,Proteasome Endopeptidase Complex ,Cell signaling ,DNA repair ,DNA damage ,lcsh:Medicine ,Apoptosis ,Protein oxidation ,medicine.disease_cause ,Article ,Immunophenotyping ,03 medical and health sciences ,medicine ,Humans ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,Volatile Organic Compounds ,Multidisciplinary ,030102 biochemistry & molecular biology ,Chemistry ,lcsh:R ,Environmental exposure ,Cell cycle ,Glutathione ,3. Good health ,Oxidative Stress ,030104 developmental biology ,Biochemistry ,Proteasome ,lcsh:Q ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,Reactive Oxygen Species ,Oxidation-Reduction ,Protein Processing, Post-Translational ,Biomarkers ,Oxidative stress ,DNA Damage - Abstract
Compelling evidence suggests that volatile organic compounds (VOCs) have potentially harmful effects to the skin. However, knowledge about cellular signaling events and toxicity subsequent to VOC exposure to human skin cells is still poorly documented. The aim of this study was to focus on the interaction between 5 different VOCs (hexane, toluene, acetaldehyde, formaldehyde and acetone) at doses mimicking chronic low level environmental exposure and the effect on human keratinocytes to get better insight into VOC-cell interactions. We provide evidence that the proteasome, a major intracellular proteolytic system which is involved in a broad array of processes such as cell cycle, apoptosis, transcription, DNA repair, protein quality control and antigen presentation, is a VOC target. Proteasome inactivation after VOC exposure is accompanied by apoptosis, DNA damage and protein oxidation. Lon protease, which degrades oxidized, dysfunctional, and misfolded proteins in the mitochondria is also a VOC target. Using human skin explants we found that VOCs prevent cell proliferation and also inhibit proteasome activity in vivo. Taken together, our findings provide insight into potential mechanisms of VOC-induced proteasome inactivation and the cellular consequences of these events.
- Published
- 2017
- Full Text
- View/download PDF
10. Selenium, Selenoproteins and Viral Infection
- Author
-
Caroline Vindry, Laurent Chavatte, Théophile Ohlmann, Olivia Guillin, Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Chavatte, Laurent
- Subjects
0301 basic medicine ,hepatitis C virus ,coxsackie virus ,Antioxidant ,medicine.medical_treatment ,viruses ,[SDV]Life Sciences [q-bio] ,lcsh:TX341-641 ,Review ,medicine.disease_cause ,Antioxidants ,influenza virus ,Microbiology ,03 medical and health sciences ,chemistry.chemical_compound ,Selenium ,Selenium deficiency ,medicine ,Humans ,viral selenoproteins ,Selenoproteins ,molluscum contagiosum virus ,[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,chemistry.chemical_classification ,reactive oxygen species ,030109 nutrition & dietetics ,Nutrition and Dietetics ,Molluscum contagiosum virus ,Selenocysteine ,biology ,human immunodeficiency virus ,glutathione peroxidases ,medicine.disease ,biology.organism_classification ,immunity ,3. Good health ,[SDV] Life Sciences [q-bio] ,030104 developmental biology ,chemistry ,Viral replication ,Virus Diseases ,thioredoxin reductases ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Selenoprotein ,Thioredoxin ,lcsh:Nutrition. Foods and food supply ,Oxidative stress ,Food Science - Abstract
International audience; Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.
- Published
- 2019
- Full Text
- View/download PDF
11. Selenized Plant Oil Is an Efficient Source of Selenium for Selenoprotein Biosynthesis in Human Cell Lines
- Author
-
Katarzyna Bierla, Karolina Modzelewska, Maurine Mosca, Elżbieta Anuszewska, Jordan Sonet, Anne-Laure Bulteau, Iza Ksiazek, Joanna Szpunar, Piotr Suchocki, Laurent Chavatte, Ryszard Lobinski, Anna Flis-Borsuk, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-09-BLAN-0048,SELENOPROTEOME(2009), Medical University of Warsaw - Poland, National Medicines Institute - Narodowy Instytut Leków [Warsaw] (NIL), Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Lobinski, Ryszard, Blanc - - SELENOPROTEOME2009 - ANR-09-BLAN-0048 - Blanc - VALID, Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,GPX1 ,Antioxidant ,medicine.medical_treatment ,selenoprotein ,Selenic Acid ,GPX4 ,Selenious Acid ,chemistry.chemical_compound ,0302 clinical medicine ,Selenium Compounds ,Selenoproteins ,selenium ,[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,chemistry.chemical_classification ,Nutrition and Dietetics ,Selenocysteine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Amino acid ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Biochemistry ,030220 oncology & carcinogenesis ,lcsh:Nutrition. Foods and food supply ,[CHIM.POLY] Chemical Sciences/Polymers ,Selol ,[CHIM.ANAL] Chemical Sciences/Analytical chemistry ,Txnrd2 ,Txnrd1 ,chemistry.chemical_element ,lcsh:TX341-641 ,Selenate ,Article ,03 medical and health sciences ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Cell Line, Tumor ,medicine ,Humans ,Plant Oils ,ICP-MS ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Triglycerides ,[CHIM.MATE] Chemical Sciences/Material chemistry ,selenized lipids ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry ,030104 developmental biology ,HEK293 Cells ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Gpx1 ,Selenoprotein ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,Gpx4 ,Selenium ,Food Science - Abstract
International audience; Selenium is an essential trace element which is incorporated in the form of a rare amino acid, the selenocysteine, into an important group of proteins, the selenoproteins. Among the twenty-five selenoprotein genes identified to date, several have important cellular functions in antioxidant defense, cell signaling and redox homeostasis. Many selenoproteins are regulated by the availability of selenium which mostly occurs in the form of water-soluble molecules, either organic (selenomethionine, selenocysteine, and selenoproteins) or inorganic (selenate or selenite). Recently, a mixture of selenitriglycerides, obtained by the reaction of selenite with sunflower oil at high temperature, referred to as Selol, was proposed as a novel non-toxic, highly bioavailable and active antioxidant and antineoplastic agent. Free selenite is not present in the final product since the two phases (water soluble and oil) are separated and the residual water-soluble selenite discarded. Here we compare the assimilation of selenium as Selol, selenite and selenate by various cancerous (LNCaP) or immortalized (HEK293 and PNT1A) cell lines. An approach combining analytical chemistry, molecular biology and biochemistry demonstrated that selenium from Selol was efficiently incorporated in selenoproteins in human cell lines, and thus produced the first ever evidence of the bioavailability of selenium from selenized lipids.
- Published
- 2019
- Full Text
- View/download PDF
12. Feasibility Study of a New Test Procedure to Identify High Emitters of Particulate Matter during Periodic Technical Inspection
- Author
-
Hervé Jeanmart, François Boveroux, Francesco Contino, Sebastian Verhelst, Laurent Chavatte, Séverine Cassiers, Philippe De Meyer, and Pascal Buekenhoudt
- Subjects
Test procedures ,business.industry ,Environmental science ,Particulates ,Process engineering ,business - Published
- 2019
- Full Text
- View/download PDF
13. Functional Analysis of Genetic Variation in the SECIS Element of Thyroid Hormone Activating Type 2 Deiodinase
- Author
-
Peter J. van der Spek, Deon J. Venter, W. Klootwijk, Madzy Rispens, Marco Medici, Chantal Zevenbergen, Arthur de Jong, Robin P. Peeters, W. Edward Visser, Evita Medici-van den Herik, Yolanda B. de Rijke, Sigrid M. A. Swagemakers, Stefan Groeneweg, Marcel E Meima, P. Reed Larsen, Laurent Chavatte, Internal Medicine, Pathology, Neurology, and Clinical Chemistry
- Subjects
0301 basic medicine ,Untranslated region ,Adult ,Male ,medicine.medical_specialty ,Thyroid Hormones ,Endocrinology, Diabetes and Metabolism ,Clinical Biochemistry ,Deiodinase ,Mutant ,Vascular damage Radboud Institute for Health Sciences [Radboudumc 16] ,DIO2 ,Context (language use) ,Biology ,Regulatory Sequences, Nucleic Acid ,medicine.disease_cause ,Biochemistry ,Iodide Peroxidase ,Cohort Studies ,03 medical and health sciences ,Young Adult ,0302 clinical medicine ,Endocrinology ,Munc18 Proteins ,Internal medicine ,medicine ,Humans ,Child ,Gene ,SECIS element ,Genetics ,Mutation ,Brain Diseases ,Biochemistry (medical) ,Prognosis ,Pedigree ,Selenocysteine ,030104 developmental biology ,Gene Expression Regulation ,biology.protein ,Female ,030217 neurology & neurosurgery ,Gene Deletion ,Follow-Up Studies - Abstract
Context Thyroid hormone is important for normal brain development. The type 2 deiodinase (D2) controls thyroid hormone action in the brain by activating T4 to T3. The enzymatic activity of D2 depends on the incorporation of selenocysteine for which the selenocysteine-insertion sequence (SECIS) element located in the 3′ untranslated region is indispensable. We hypothesized that mutations in the SECIS element could affect D2 function, resulting in a neurocognitive phenotype. Objective To identify mutations in the SECIS element of DIO2 in patients with intellectual disability and to test their functional consequences. Design, Setting, and Patients The SECIS element of DIO2 was sequenced in 387 patients with unexplained intellectual disability using a predefined pattern of thyroid function tests. SECIS element read-through in wild-type or mutant D2 was quantified by a luciferase reporter system in transfected cells. Functional consequences were assessed by quantifying D2 activity in cell lysate or intact cell metabolism studies. Results Sequence analysis revealed 2 heterozygous mutations: c.5703C>T and c.5730A>T, which were also present in the unaffected family members. The functional evaluation showed that both mutations did not affect D2 enzyme activity in cell lysates or intact cells, although the 5730A>T mutation decreased SECIS element read-through by 75%. In the patient harboring the c.5730A>T variant, whole genome sequencing revealed a pathogenic deletion of the STXBP1 gene. Conclusions We report on two families with mutations in the SECIS element of D2. Although functional analysis showed that nucleotide 5730 is important for normal SECIS element read-through, the two variants did not segregate with a distinct phenotype.
- Published
- 2018
14. Translation regulation of mammalian selenoproteins
- Author
-
Théophile Ohlmann, Caroline Vindry, Laurent Chavatte, Contrôle traductionnel des ARNm eucaryotes et viraux – Translational control of Eukaryotic and Viral RNAs, Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Biophysics ,chemistry.chemical_element ,Computational biology ,Biology ,Biochemistry ,Selenoprotein ,03 medical and health sciences ,chemistry.chemical_compound ,SECIS ,Translational regulation ,Molecular Biology ,chemistry.chemical_classification ,Selenocysteine ,RNA ,Translational control ,Genetic code ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Stop codon ,3. Good health ,Amino acid ,030104 developmental biology ,UGA recoding ,chemistry ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Selenium ,Sec-tRNA([Ser]Sec) - Abstract
International audience; BACKGROUND: Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. SCOPE OF REVIEW: The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA[Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. MAJOR CONCLUSIONS: The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. GENERAL SIGNIFICANCE: The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation.
- Published
- 2018
- Full Text
- View/download PDF
15. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines
- Author
-
Zahia Touat-Hamici, Juliusz Bianga, Anne-Laure Bulteau, Hélène Jean-Jacques, Joanna Szpunar, Ryszard Lobinski, Laurent Chavatte, Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université, École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP], École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition ( ICAN ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Assistance publique - Hôpitaux de Paris (AP-HP)-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -CHU Pitié-Salpêtrière [APHP], Institut de Génomique Fonctionnelle de Lyon ( IGFL ), École normale supérieure - Lyon ( ENS Lyon ) -Institut National de la Recherche Agronomique ( INRA ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux ( IPREM ), Université de Pau et des Pays de l'Adour ( UPPA ) -Centre National de la Recherche Scientifique ( CNRS ), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Lobinski, Ryszard, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,[SDV]Life Sciences [q-bio] ,Biophysics ,chemistry.chemical_element ,Glutathione peroxidase, IEF – LA-ICP MS, SECIS, Selenoprotein hierarchy, Thioredoxin reductase, UGA recoding ,Biochemistry ,IEF – LA-ICP MS ,03 medical and health sciences ,chemistry.chemical_compound ,SECIS ,Selenoprotein hierarchy ,LNCaP ,Molecular Biology ,SECIS element ,chemistry.chemical_classification ,030102 biochemistry & molecular biology ,Selenocysteine ,integumentary system ,HEK 293 cells ,Thioredoxin reductase ,3. Good health ,Cell biology ,[SDV] Life Sciences [q-bio] ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,UGA recoding ,030104 developmental biology ,chemistry ,Cell culture ,[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry ,Glutathione peroxidase ,Selenoprotein ,Immortalised cell line ,Selenium - Abstract
International audience; Background: Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. Methods: We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. Results: We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGAselenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. Conclusions: We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. General significance: We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture.
- Published
- 2018
- Full Text
- View/download PDF
16. Update on Selenoprotein Biosynthesis
- Author
-
Anne-Laure Bulteau and Laurent Chavatte
- Subjects
Proteome ,Physiology ,SEPP1 ,Clinical Biochemistry ,SEP15 ,Biology ,Biochemistry ,Selenium ,chemistry.chemical_compound ,Protein biosynthesis ,Humans ,RNA, Messenger ,Insertion sequence ,Selenoproteins ,Molecular Biology ,Gene ,General Environmental Science ,chemistry.chemical_classification ,Genetics ,integumentary system ,Selenocysteine ,RNA ,Cell Biology ,RNA, Transfer, Amino Acid-Specific ,chemistry ,Protein Biosynthesis ,Codon, Terminator ,General Earth and Planetary Sciences ,Selenoprotein - Abstract
Selenium is an essential trace element that is incorporated in the small but vital family of proteins, namely the selenoproteins, as the selenocysteine amino acid residue. In humans, 25 selenoprotein genes have been characterized. The most remarkable trait of selenoprotein biosynthesis is the cotranslational insertion of selenocysteine by the recoding of a UGA codon, normally decoded as a stop signal.In eukaryotes, a set of dedicated cis- and trans-acting factors have been identified as well as a variety of regulatory mechanisms, factors, or elements that control the selenoprotein expression at the level of the UGA-selenocysteine recoding process, offering a fascinating playground in the field of translational control. It appeared that the central players are two RNA molecules: the selenocysteine insertion sequence (SECIS) element within selenoprotein mRNA and the selenocysteine-tRNA([Ser]Sec); and their interacting partners.After a couple of decades, despite many advances in the field and the discovery of many essential and regulatory components, the precise mechanism of UGA-selenocysteine recoding remains elusive and more complex than anticipated, with many layers of control. This review offers an update of selenoproteome biosynthesis and regulation in eukaryotes.The regulation of selenoproteins in response to a variety of pathophysiological conditions and cellular stressors, including selenium levels, oxidative stress, replicative senescence, or cancer, awaits further detailed investigation. Clearly, the efficiency of UGA-selenocysteine recoding is the limiting stage of selenoprotein synthesis. The sequence of events leading Sec-tRNA([Ser]Sec) delivery to ribosomal A site awaits further analysis, notably at the level of a three-dimensional structure.
- Published
- 2015
- Full Text
- View/download PDF
17. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach
- Author
-
Yona Legrain, Zahia Touat-Hamici, Ghania Hammad, David Cornu, Stéphane Duhieu, Laurent Chavatte, Anne-Laure Bulteau, Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Lyon (ENS Lyon), Contrôle traductionnel des ARNm eucaryotes et viraux – Translational control of Eukaryotic and Viral RNAs, Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Senescence ,Cell signaling ,Antioxidant ,Physiology ,proteomics ,2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) ,selenium ,protein abundance ,selenoprotein ,replicative senescence ,WI-38 cells ,medicine.medical_treatment ,Clinical Biochemistry ,chemistry.chemical_element ,Biochemistry ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,medicine ,Molecular Biology ,2. Zero hunger ,chemistry.chemical_classification ,Selenocysteine ,lcsh:RM1-950 ,Cell Biology ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,WI-38 ,Cell biology ,030104 developmental biology ,lcsh:Therapeutics. Pharmacology ,chemistry ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Selenoprotein ,Signal transduction ,Selenium - Abstract
International audience; Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity \textpm50% and a p value \textless 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.
- Published
- 2018
- Full Text
- View/download PDF
18. Selenoproteins
- Author
-
Laurent Chavatte
- Published
- 2018
- Full Text
- View/download PDF
19. Detection of Selenoproteins by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP MS) in Immobilized pH Gradient (IPG) Strips
- Author
-
Sandra Mounicou, Laurent Chavatte, Jordan Sonet, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CNRS (ATIP program), the Fondation pour la Recherche Médicale (LC), the Ligue Contre le Cancer (Comité de l’Essonne), the programme interdisciplinaire de recherche du CNRS longévité et vieillissement, the Association pour la recherche sur le cancer (grants numbers 4849), ANR-09-BLAN-0048,SELENOPROTEOME(2009), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux ( IPREM ), Université de Pau et des Pays de l'Adour ( UPPA ) -Centre National de la Recherche Scientifique ( CNRS ), and ANR-09-BLAN-0048,SELENOPROTEOME,Quantitative analysis of the selenoproteome for studies of the kinetics and hierarchy of selenoprotein expression in human cell lines ( 2009 )
- Subjects
0301 basic medicine ,ief ,chemistry.chemical_element ,selenof ,Mass spectrometry ,Tandem mass spectrometry ,[ CHIM ] Chemical Sciences ,03 medical and health sciences ,chemistry.chemical_compound ,icp ms ,[CHIM]Chemical Sciences ,selenium ,glutathione peroxidase ,Inductively coupled plasma mass spectrometry ,cell culture ,Chromatography ,030102 biochemistry & molecular biology ,Selenocysteine ,integumentary system ,thioredoxin reductase ,Chaotropic agent ,030104 developmental biology ,Isoelectric point ,chemistry ,laser ablation ,esi ms/ms ,Immobilized pH gradient ,Selenium - Abstract
International audience; In contrast to other trace elements that are cofactors of enzymes and removed from proteins under denaturing conditions, Se is covalently bound to proteins when incorporated into selenoproteins, since it is a component of selenocysteine aminoacid. It implies that selenoproteins can undergo several biochemical separation methods in stringent and chaotropic conditions and still maintain the presence of selenium in the primary sequence. This feature has been used to develop a method for the detection of trace levels of human selenoproteins in cell extracts without the use of radioactive isotopes. The selenoproteins are separated as a function of their isoelectric point (pI) using iso-electrofocusing (IEF) electrophoretic strips and detected by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). This method, therefore referred to as IEF-LA-ICP MS, allowed the detection of several selenoproteins in human cell lines, including Gpx1, Gpx4, TXNRD1, TXNRD2, and SELENOF.
- Published
- 2018
- Full Text
- View/download PDF
20. Nonradioactive Isotopic Labeling and Tracing of Selenoproteins in Cultured Cell Lines
- Author
-
Jordan Sonet, Laurent Chavatte, Sandra Mounicou, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux ( IPREM ), Université de Pau et des Pays de l'Adour ( UPPA ) -Centre National de la Recherche Scientifique ( CNRS ), CNRS (ATIP program to LC), the Fondation pour la Recherche Médicale, the Ligue Contre le Cancer (Comité de l’Essonne), the programme interdisciplinaire de recherche du CNRS longévité et vieillissement, the Association pour la recherche sur le cancer (grants numbers 4849), and ANR-09-BLAN-0048,SELENOPROTEOME,Quantitative analysis of the selenoproteome for studies of the kinetics and hierarchy of selenoprotein expression in human cell lines ( 2009 )
- Subjects
0301 basic medicine ,chemistry.chemical_classification ,Selenocysteine ,integumentary system ,chemistry.chemical_element ,cultured cells ,Proteomics ,Mass spectrometry ,[ CHIM ] Chemical Sciences ,Amino acid ,Isotopic labeling ,nonradioactive isotopes ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,Biochemistry ,chemistry ,icp ms ,In vivo ,selenoproteins ,selenium ,Inductively coupled plasma mass spectrometry ,Selenium - Abstract
International audience; Selenium (Se) is an essential component of genetically encoded selenoproteins, in the form of a rare amino acid, namely the selenocysteine (Sec). Radioactive (75)Se has been widely used to trace selenoproteins in vitro and in vivo (cell models and animals). Alternatively, its unique isotopic pattern can be used to detect and characterize nonradioactive Se-compounds in cellular extracts using molecular or elemental mass spectrometry at ppm levels. However, when studying trace levels of Se-compounds, such as selenoproteins (ppt levels), the distribution of the signal between its six naturally abundant isotopes reduces its sensitivity. Here, we describe the use of isotopically enriched forms of Se as an alternative strategy to radioactive (75)Se, for the labeling and tracing of selenoproteins in cultured cell lines.
- Published
- 2018
- Full Text
- View/download PDF
21. Selenium Metabolism, Regulation, and Sex Differences in Mammals
- Author
-
Caroline Vindry, Théophile Ohlmann, and Laurent Chavatte
- Subjects
inorganic chemicals ,0301 basic medicine ,chemistry.chemical_classification ,integumentary system ,Selenocysteine ,Glutathione peroxidase ,food and beverages ,chemistry.chemical_element ,Context (language use) ,Biology ,03 medical and health sciences ,Metabolic pathway ,chemistry.chemical_compound ,030104 developmental biology ,0302 clinical medicine ,chemistry ,Biochemistry ,030220 oncology & carcinogenesis ,Selenide ,Selenoprotein ,Selenium ,Organism - Abstract
Selenium is an essential trace element in mammals, which is closely related to sulfur in respect of chemistry, catalysis, and metabolism. Selenium is often mentioned in the context of cancer, immunity, brain development, and cardiovascular physiology. Most of the beneficial effects of selenium are expected to come from the pool of selenoproteins, which are involved in redox biology and homeostasis. Many chemical species of selenium can enter the organism to be transformed into selenide, the central metabolite for selenoprotein synthesis. In this chapter, the various selenium species as well as the several metabolic pathways leading to selenide are described, and a particular highlight is given on sexual dimorphic regulation of selenium metabolism and selenoprotein expression.
- Published
- 2018
- Full Text
- View/download PDF
22. In vitro induction and proteomics characterisation of a uranyl–protein interaction network in bovine serum
- Author
-
Łukasz Szyrwiel, Ryszard Lobinski, Viktoryia Liauchuk, Laurent Chavatte, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), and Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Proteomics ,Biophysics ,chemistry.chemical_element ,Plasma protein binding ,Calcium ,Biochemistry ,Biomaterials ,chemistry.chemical_compound ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Protein Interaction Mapping ,Animals ,[CHIM]Chemical Sciences ,Protein Interaction Maps ,Bovine serum albumin ,Gel electrophoresis ,Chromatography ,biology ,Metals and Alloys ,Blood Proteins ,Uranyl ,Uranium Compounds ,Blood proteins ,chemistry ,Chemistry (miscellaneous) ,biology.protein ,Cattle ,Ultracentrifuge ,Protein Binding - Abstract
International audience; Uranyl ions (UO2 2+) were shown to interact with a number of foetal serum proteins, leading to the formation of a complex that could be isolated by ultracentrifugation. The molecular weight of the complex was estimated based on size-exclusion chromatography as 650 000 Da. Online ICP AES detection indicated that UO2 2+ in the complex co-eluted with minor amounts of calcium and phosphorous, but not with magnesium. A 1D gel electrophoresis of the U-complex produced more than 10 bands of similar intensity compared with only 2-3 intense bands corresponding to the main serum proteins in the control serum, indicative of the specific interaction of UO2 2+ with minor proteins. A proteomics approach allowed for the identification of 74 proteins in the complex. Analysis of the protein-protein interaction network in the UO2 2+ complex identified 32 proteins responsible for protein-protein complex formation and 34 with demonstrated ion-binding function, suggesting that UO2 2+ stimulates the formation of protein functional networks rather than using a particular molecule as its target. © 2015 The Royal Society of Chemistry.
- Published
- 2015
- Full Text
- View/download PDF
23. Comparison of analytical methods using enzymatic activity, immunoaffinity and selenium-specific mass spectrometric detection for the quantitation of glutathione peroxidase 1
- Author
-
Katarzyna Bierla, Ryszard Lobinski, Jordan Sonet, Anne-Laure Bulteau, Laurent Chavatte, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,GPX1 ,Erythrocytes ,LC ,chemistry.chemical_element ,Western blot ,chromatography ICP MS ,01 natural sciences ,Biochemistry ,Mass Spectrometry ,Analytical Chemistry ,03 medical and health sciences ,Selenium ,1ICP MS ,Glutathione Peroxidase GPX1 ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,medicine ,Environmental Chemistry ,Animals ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Polyacrylamide gel electrophoresis ,Inductively coupled plasma mass spectrometry ,Spectroscopy ,Gel electrophoresis ,chemistry.chemical_classification ,Immunoassay ,Glutathione Peroxidase ,Chromatography ,medicine.diagnostic_test ,010401 analytical chemistry ,ICP MS ,Enzymatic assay ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Laser ablation ,0104 chemical sciences ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Enzyme Activation ,030104 developmental biology ,Enzyme ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Glutathione peroxidase 1 ,Cattle ,Quantitative analysis (chemistry) ,Laser ablation ICP MS - Abstract
International audience; Glutathione peroxidase 1 (Gpx1), one of the most responsive selenoproteins to the variation of selenium concentration, is often used to evaluate ”selenium status” at a cellular or organismal level. The four major types of analytical methodologies to quantify Gpx1 were revisited. They include (i) an enzymatic assay, (ii, iii) polyacrylamide gel electrophoresis (PAGE) with (ii) western blot detection of protein or (iii) inductively coupled plasma mass spectrometry (ICP MS) detection of selenium, and (iv) size-exclusion chromatography with ICP MS detection. Each of the four methods was optimized for the quantification of Gpx1 with maximum sensitivity. The methods based on the enzymatic and immunodetection offer a much higher sensitivity but their accuracy is compromised by the limited selectivity and limited dynamic range. The advantages, drawbacks and sources of error of each technique are critically discussed and the need for the cross-validation of the results using the different techniques to assure the quality assurance of quantitative analysis is emphasized.
- Published
- 2017
- Full Text
- View/download PDF
24. Detection of Selenoproteins by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP MS) in Immobilized pH Gradient (IPG) Strips
- Author
-
Jordan, Sonet, Sandra, Mounicou, and Laurent, Chavatte
- Subjects
Glutathione Peroxidase ,Spectrometry, Mass, Electrospray Ionization ,Tandem Mass Spectrometry ,Humans ,Selenoproteins ,Mass Spectrometry ,Cell Line - Abstract
In contrast to other trace elements that are cofactors of enzymes and removed from proteins under denaturing conditions, Se is covalently bound to proteins when incorporated into selenoproteins, since it is a component of selenocysteine aminoacid. It implies that selenoproteins can undergo several biochemical separation methods in stringent and chaotropic conditions and still maintain the presence of selenium in the primary sequence. This feature has been used to develop a method for the detection of trace levels of human selenoproteins in cell extracts without the use of radioactive isotopes. The selenoproteins are separated as a function of their isoelectric point (pI) using iso-electrofocusing (IEF) electrophoretic strips and detected by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). This method, therefore referred to as IEF-LA-ICP MS, allowed the detection of several selenoproteins in human cell lines, including Gpx1, Gpx4, TXNRD1, TXNRD2, and SELENOF.
- Published
- 2017
25. Nonradioactive Isotopic Labeling and Tracing of Selenoproteins in Cultured Cell Lines
- Author
-
Jordan, Sonet, Sandra, Mounicou, and Laurent, Chavatte
- Subjects
Proteomics ,Selenium ,Isotopes ,Isotope Labeling ,Animals ,Humans ,Selenoproteins ,Cells, Cultured ,Mass Spectrometry ,Cell Line - Abstract
Selenium (Se) is an essential component of genetically encoded selenoproteins, in the form of a rare amino acid, namely the selenocysteine (Sec). Radioactive
- Published
- 2017
26. Selenoprotein Gene Nomenclature
- Author
-
Ulrich Schweizer, Josef Köhrle, Michael T. Howard, Laurent Chavatte, Regina Brigelius-Flohé, Gustavo Salinas, Philip D. Whanger, Kaixun Huang, Fulvio Ursini, Matilde Maiorino, Raymond F. Burk, Marla J. Berry, Ick Young Kim, Dolph L. Hatfield, Miljan Simonović, Alexei V. Lobanov, Donna M. Driscoll, Margaret P. Rayman, Sharon Rozovsky, Alain Krol, Peter R. Hoffmann, Elias S.J. Arnér, Roger A. Sunde, Marcus Conrad, Fiona R. Green, Vadim N. Gladyshev, Byeong Jae Lee, Elspeth A. Bruford, Qiong Liu, Sergi Castellano, Ana Ferreiro, Xin Gen Lei, Bradley A. Carlson, Byung Cheon Lee, Gregory V. Kryukov, Alan M. Diamond, Paul R. Copeland, Yan Zhang, Edward E. Schmidt, Leopold Flohé, John E. Hesketh, Joseph Loscalzo, Marco Mariotti, Hwa-Young Kim, Roderic Guigó, Petra A. Tsuji, Lutz Schomburg, K. Sandeep Prabhu, Susan Tweedie, Diane E. Handy, Arne Holmgren, Alain Lescure, Robert J. Hondal, Harvard Medical School [Boston] (HMS), Broad Institute of MIT and Harvard (BROAD INSTITUTE), Harvard Medical School [Boston] (HMS)-Massachusetts Institute of Technology (MIT)-Massachusetts General Hospital [Boston], Karolinska Institutet [Stockholm], University of Hawai‘i [Mānoa] (UHM), German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), European Bioinformatics Institute [Hinxton] (EMBL-EBI), EMBL Heidelberg, Vanderbilt University School of Medicine [Nashville], National Institutes of Health [Bethesda] (NIH), Max Planck Institute for Evolutionary Anthropology [Leipzig], Max-Planck-Gesellschaft, Expression de l'ARN chez les virus et les eucaryotes - RNA Expression in Viruses and Eukaryotes (REVE), Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institute for Developmental Genetics [Neuherberg] (IDG), German Research Center for Environmental Health - Helmholtz Center München (GmbH), Robert Wood Johnson Medical School [Piscataway, NJ] (RWJMS), University of Illinois [Chicago] (UIC), University of Illinois System, Cleveland Clinic, Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Universidad de la República [Montevideo] (UDELAR), Università degli Studi di Padova = University of Padua (Unipd), University of Manchester [Manchester], Centre for Genomic Regulation [Barcelona] (CRG), Universitat Pompeu Fabra [Barcelona] (UPF)-Centro Nacional de Analisis Genomico [Barcelona] (CNAG), Newcastle University [Newcastle], University of Vermont [Burlington], University of Utah, Huazhong University of Science and Technology [Wuhan] (HUST), Yeungnam University [South Korea], Korea University [Seoul], Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), KSQ Therapeutics [Cambridge MA], Seoul National University [Seoul] (SNU), Cornell University [New York], Shenzhen University [Shenzhen], Pennsylvania State University (Penn State), Penn State System, University of Surrey (UNIS), University of Delaware [Newark], Instituto de Higiene [Montevideo], Montana State University (MSU), Rheinische Friedrich-Wilhelms-Universität Bonn, University of Wisconsin-Madison, Towson University [Towson, MD, United States], University of Maryland System, Oregon State University (OSU), Centre International de Recherche en Infectiologie - UMR (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre de référence des maladies rares neuromusculaires, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Universidad de la República [Montevideo] (UCUR), Universita degli Studi di Padova, and Universidad de la República (UDELAR)
- Subjects
0301 basic medicine ,GPX2 ,SEPP1 ,selenocysteine ,SEP15 ,function ,gene name ,genomics ,nomenclature ,selenium ,selenoprotein ,structure-function ,Biochemistry ,Molecular Biology ,Cell Biology ,Biology ,03 medical and health sciences ,Terminology as Topic ,Humans ,education ,Selenoproteins ,chemistry.chemical_classification ,Genetics ,education.field_of_study ,030102 biochemistry & molecular biology ,Selenoprotein N ,Selenoprotein P ,Methods and Resources ,Selenoprotein T ,Selenoprotein W ,030104 developmental biology ,chemistry ,Selenoprotein ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.
- Published
- 2016
- Full Text
- View/download PDF
27. Detection of selenoproteins in human cell extracts by laser ablation-ICP MS after separation by polyacrylamide gel electrophoresis and blotting
- Author
-
Hugues Preud'homme, Christophe Pécheyran, Ryszard Lobinski, Joanna Szpunar, Zahia Touat, Juliusz Bianga, Guillaume Ballihaut, Sandra Mounicou, Laurent Chavatte, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-09-BLAN-0048,SELENOPROTEOME(2009)
- Subjects
Gel electrophoresis ,0303 health sciences ,Chromatography ,Laser ablation ,Chemistry ,medicine.medical_treatment ,010401 analytical chemistry ,Analytical chemistry ,chemistry.chemical_element ,Ablation ,Laser ,01 natural sciences ,0104 chemical sciences ,Analytical Chemistry ,law.invention ,Blot ,03 medical and health sciences ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,law ,medicine ,Inductively coupled plasma mass spectrometry ,Polyacrylamide gel electrophoresis ,Spectroscopy ,Selenium ,030304 developmental biology - Abstract
International audience; Laser ablation-ICP MS was optimized for the sensitive detection of selenoproteins in polyacrylamide gel and PVDF membrane after blotting. For this purpose, two interlaboratory reference samples were prepared: glutathione peroxidase band in the gel and on the membrane, respectively. The optimisation was carried out using two systems: 213 nm laser (Newwave) - Agilent 7500ce ICP MS, and a 1030 nm high repetition rate femtosecond laser with galvanometric optics (Novalase) - PE/SCIEX DRCII. Sensitivity and signal-to-noise ratio were benchmarked to those obtained for the same sample by a recently published method in a reference lab. The optimization allowed a 12-fold gain of the S/N ratio during ablation of gels and a 3.5-fold gain in the ablation of blots in comparison with the method using an essentially similar system published by the reference lab. The gain of S/N by increasing ablation surface using the high repetition rate laser was not as spectacular as expected (2.5-fold for the gels and 1.5-fold for the blots) as the background noise increased considerably when a larger surface is ablated due to selenoproteins peak tailing. The study allowed for the first time LA-ICP MS detection of selenoproteins (separated by gel electrophoresis) in human cell extracts with the selenium concentration at the 10 ng ml -1 level.
- Published
- 2012
- Full Text
- View/download PDF
28. Alteration of Selenoprotein Expression During Stress and in Aging
- Author
-
Zahia Touat-Hamici, Jordan Sonet, Anne-Laure Bulteau, Yona Legrain, Laurent Chavatte, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), and Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Antioxidant ,medicine.medical_treatment ,Selenoproteome ,Biology ,Cellular senescence ,medicine.disease_cause ,03 medical and health sciences ,chemistry.chemical_compound ,Biomarkers of aging ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Protein biosynthesis ,medicine ,[CHIM]Chemical Sciences ,Translation control ,Regulation of gene expression ,chemistry.chemical_classification ,Reactive oxygen species ,030102 biochemistry & molecular biology ,Selenocysteine ,Gene regulation ,Cell biology ,UGA recoding ,030104 developmental biology ,chemistry ,Oxidative stress ,Selenoprotein - Abstract
International audience; Selenium (Se) is an essential trace element implicated in many facets of human health and disease. Most of its beneficial effects are attributed to its presence as selenocysteine in a small, but vital group of proteins, namely the selenoproteins. They are implicated in antioxidant defense, redox homeostasis, redox signaling and possibly other cellular processes. The selenoproteome is primarily controlled by Se bioavailability that induces prioritization of protein biosynthesis, when this trace element is deficient. The hierarchical regulation of the selenoproteome by other exogenous stimuli, cellular stressors or pathophysiological conditions is poorly understood. Understanding biological causes of aging also remains challenging, although several theories and concepts have emerged in the past decades. Characterization of biomarkers of aging is controversial even with the impressive amount of ‘omic’ analyses performed in many living organisms. Accumulation of age-related damage, including oxidative-induced cellular damage, and the decreasing efficiency in elimination and repair systems have been extensively reported, being either a cause or consequence of the aging phenomenon. In this regard, and given the role of Se in redox biology of organisms, studying regulation of the selenoproteome in response to oxidative stress and aging is essential. This chapter reviews the current knowledge in this area.
- Published
- 2016
- Full Text
- View/download PDF
29. Biomedical and Pharmaceutical Applications
- Author
-
Volker Nischwitz, Gunda Koellensperger, Tamara García-Barrera, Julia Bornhorst, Jordan Sonet, José Luis Gómez-Ariza, Bernhard Michalke, Luis Galvez, Carlo Barbante, Laurent Chavatte, Anne-Laure Bulteau, Katharina Neth, Belén Callejón-Leblic, Bernhard K. Keppler, Sarah Theiner, Marco Roman, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), and Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemistry ,Cerebrospinal fluid samples ,010401 analytical chemistry ,02 engineering and technology ,Alzheimer's disease ,Selenium biology ,021001 nanoscience & nanotechnology ,01 natural sciences ,3. Good health ,0104 chemical sciences ,Biomedical samples ,Selenium speciation analysis ,Manganese speciation analysis ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Mass spectrometry imaging techniques ,[CHIM]Chemical Sciences ,0210 nano-technology ,Selenoproteins - Abstract
International audience; This chapter reviews the current knowledge of important functions of selenium (Se) and selenoproteins in physiology and pathology in human. The outcome of the different clinical trials reveals the need for a better understanding of Se biology. The physiology of Se depends on its continuous supply to the body and its optimal distribution to tissues. The development and application of mass spectrometry imaging (MSI) techniques are of great interest in cancer research and diagnosis to study elemental distributions in biological tissue samples at microscopic level. The ability to record spatial accumulation of multiple analytes in tissue samples under native conditions and to directly correlate obtained images with histological features has made MSI an invaluable analytical tool. The chapter concentrates on literature about manganese (Mn) speciation targeting neurodegeneration effects, first, in human samples, such as serum or cerebrospinal fluid (CSF) samples, where some studies were summarized in 2007. It also presents a case study of Alzheimer's disease.
- Published
- 2016
- Full Text
- View/download PDF
30. Selective up-regulation of human selenoproteins in response to oxidative stress
- Author
-
Zahia Touat-Hamici, Laurent Chavatte, Anne-Laure Bulteau, and Yona Legrain
- Subjects
GPX1 ,Cytoplasm ,GPX2 ,Antioxidant ,medicine.medical_treatment ,Immunoblotting ,chemistry.chemical_element ,Gene Expression ,Biology ,GPX4 ,medicine.disease_cause ,Biochemistry ,chemistry.chemical_compound ,Selenium ,Glutathione Peroxidase GPX1 ,Downregulation and upregulation ,Physiology (medical) ,Translational regulation ,medicine ,Humans ,Gene Regulation ,Selenoproteins ,Molecular Biology ,SECIS element ,chemistry.chemical_classification ,Genetics ,Cell Nucleus ,Glutathione Peroxidase ,Selenocysteine ,integumentary system ,Reverse Transcriptase Polymerase Chain Reaction ,Membrane Proteins ,Cell Biology ,Hydrogen Peroxide ,Oxidants ,Phospholipid Hydroperoxide Glutathione Peroxidase ,Cell biology ,Up-Regulation ,Oxidative Stress ,HEK293 Cells ,chemistry ,Microscopy, Fluorescence ,Selenoprotein ,Reactive Oxygen Species ,Oxidative stress - Abstract
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.
- Published
- 2015
31. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes
- Author
-
Laurent Chavatte, Bernard A. Brown, and Donna M. Driscoll
- Subjects
Ribosomal Proteins ,Untranslated region ,Molecular Sequence Data ,Biology ,Ribosome ,Protein Structure, Secondary ,chemistry.chemical_compound ,Structural Biology ,Ribosomal protein ,Animals ,Amino Acid Sequence ,RNA, Messenger ,Codon ,3' Untranslated Regions ,Molecular Biology ,SECIS element ,chemistry.chemical_classification ,Genetics ,Base Sequence ,Selenocysteine ,RNA-Binding Proteins ,Rats ,Cell biology ,Elongation factor ,Eukaryotic Cells ,chemistry ,Codon, Terminator ,Nucleic Acid Conformation ,Selenoprotein ,Selenocysteine incorporation ,Sequence Alignment ,Protein Binding - Abstract
The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G.A pairs, decreases the SBP2-SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.
- Published
- 2005
- Full Text
- View/download PDF
32. Noncanonical Function of Glutamyl-Prolyl-tRNA Synthetase
- Author
-
Michael Kinter, Laurent Chavatte, Sunghoon Kim, Paul L. Fox, Vasudevan Seshadri, Carri A. Gerber, Shu M. Ting, Barsanjit Mazumder, Prabha Sampath, J. David Dignam, and Donna M. Driscoll
- Subjects
0303 health sciences ,Aminoacyl tRNA synthetase ,Biochemistry, Genetics and Molecular Biology(all) ,030302 biochemistry & molecular biology ,GAIT complex ,RNA ,Aminoacylation ,Translation (biology) ,Biology ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,chemistry.chemical_compound ,chemistry ,Biochemistry ,Amino Acyl-tRNA Synthetases ,Protein biosynthesis ,Gene silencing ,030304 developmental biology - Abstract
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.
- Published
- 2004
- Full Text
- View/download PDF
33. Stop Codons and UGG Promote Efficient Binding of the Polypeptide Release Factor eRF1 to the Ribosomal A Site
- Author
-
Lev L. Kisselev, Alain Favre, Laurent Chavatte, Ludmila Frolova, and Philippe Laugâa
- Subjects
Peptidyl transferase ,Macromolecular Substances ,Oligonucleotides ,Models, Biological ,Ribosome ,Sense Codon ,Structural Biology ,Humans ,RNA, Messenger ,Molecular Biology ,Binding Sites ,Base Sequence ,biology ,Molecular biology ,Stop codon ,Molecular Weight ,A-site ,Cross-Linking Reagents ,Protein Biosynthesis ,Transfer RNA ,Codon, Terminator ,biology.protein ,Biophysics ,Eukaryotic Ribosome ,Release factor ,Ribosomes ,Peptide Termination Factors ,Protein Binding - Abstract
To investigate the codon dependence of human eRF1 binding to the mRNA-ribosome complex, we examined the formation of photocrosslinks between ribosomal components and mRNAs bearing a photoactivable 4-thiouridine probe in the first position of the codon located in the A site. Addition of eRF1 to the phased mRNA-ribosome complexes triggers a codon-dependent quenching of crosslink formation. The concentration of eRF1 triggering half quenching ranges from low for the three stop codons, to intermediate for s4UGG and high for other near-cognate triplets. A theoretical analysis of the photochemical processes occurring in a two-state bimolecular model raises a number of stringent conditions, fulfilled by the system studied here, and shows that in any case sound KD values can be extracted if the ratio mT/KD<
- Published
- 2003
- Full Text
- View/download PDF
34. Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRF1s
- Author
-
Olivier Jean-Jean, Alain Favre, Stéphanie Kervestin, and Laurent Chavatte
- Subjects
Amino Acid Motifs ,Molecular Sequence Data ,Reading frame ,Hybrid Cells ,Stop signal ,Biology ,General Biochemistry, Genetics and Molecular Biology ,Sense Codon ,Eukaryotic translation ,Animals ,Humans ,Amino Acid Sequence ,Ciliophora ,Molecular Biology ,DNA Primers ,Genetics ,Base Sequence ,Sequence Homology, Amino Acid ,General Immunology and Microbiology ,General Neuroscience ,Articles ,Genetic code ,Stop codon ,Open reading frame ,Amino Acid Substitution ,Protein Biosynthesis ,Codon usage bias ,Codon, Terminator ,Peptide Termination Factors - Abstract
During eukaryotic translation termination, eRF1 responds to three stop codons. However, in ciliates with variant genetic codes, only one or two codons function as a stop signal. To localize the region of ciliate eRF1 implicated in stop codon discrimination, we have constructed ciliate-human hybrid eRF1s by swapping regions of human eRF1 for the equivalent region of ciliate Euplotes eRF1. We have examined the formation of a cross-link between recombinant eRF1s and mRNA analogs containing the photoactivable 4-thiouridine (s(4)U) at the first position of stop and control sense codons. With human eRF1, this cross-link can be detected only when either stop or UGG codons are located in the ribosomal A site. Here we show that the cross-link of the Euplotes-human hybrid eRF1 is restricted to mRNAs containing UAG and UAA codons, and that the entire N-terminal domain of Euplotes eRF1 is involved in discriminating against UGA and UGG. On the basis of these results, we discuss the steps of the selection process that determine the accuracy of stop codon recognition in eukaryotes.
- Published
- 2003
- Full Text
- View/download PDF
35. A novel branched TAT47-57 peptide for selective Ni2+ introduction into the human fibrosarcoma cell nucleus
- Author
-
Łukasz Szczukowski, Junko Shirataki, Satoshi Matsuyama, Łukasz Szyrwiel, Bartosz Setner, Zbigniew Szewczuk, Laurent Chavatte, Kazuto Yamauchi, Mari Shimura, Ryszard Łobiński, Akihiro Matsunaga, Wiesław Malinka, inconnu, Inconnu, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), and Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA damage ,Fibrosarcoma ,Biophysics ,Peptide ,Biology ,Biochemistry ,Biomaterials ,Residue (chemistry) ,Nickel ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Cell Line, Tumor ,Fluorescence microscope ,medicine ,Humans ,[CHIM]Chemical Sciences ,Amino Acid Sequence ,Cytotoxicity ,Peptide sequence ,Histidine ,chemistry.chemical_classification ,Cell Nucleus ,Optical Imaging ,Metals and Alloys ,Peptide Fragments ,medicine.anatomical_structure ,chemistry ,Chemistry (miscellaneous) ,Carcinogens ,tat Gene Products, Human Immunodeficiency Virus ,Nucleus ,DNA Damage - Abstract
International audience; A TAT\textlessinf\textgreater47-57\textless/inf\textgreater peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni2+ ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni2+ delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni2+. © The Royal Society of Chemistry.
- Published
- 2015
- Full Text
- View/download PDF
36. Effect of Lon protease knockdown on mitochondrial function in HeLa cells
- Author
-
Caroline L'Hermitte-Stead, Monique Gareil, Marie-Paule Hamon, Anne-Laure Bulteau, Bertrand Friguet, Aurélien Bayot, Pierre Rustin, Florian Beaumatin, Laurent Chavatte, Muriel Priault, Anne Lombès, Physiopathologie, conséquences fonctionnelles et neuroprotection des atteintes du cerveau en développement, Université Paris Diderot - Paris 7 ( UPD7 ) -IFR2-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut de biochimie et génétique cellulaires ( IBGC ), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique ( CNRS ), Institut Cochin ( UM3 (UMR 8104 / U1016) ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Service de Biochimie Métabolique [CHU Pitié-Salpêtrière], Assistance publique - Hôpitaux de Paris (AP-HP)-CHU Pitié-Salpêtrière [APHP], Biologie et Biochimie Cellulaire du Vieillissement (EA 3106), Université Paris Diderot - Paris 7 ( UPD7 ), Laboratoire de Biologie Cellulaire du vieillissement, Université Pierre et Marie Curie - Paris 6 ( UPMC ) -IFR83, Laboratoire de Biologie et Biochimie cellulaire du Vieillissement, Université Paris Diderot - Paris 7 (UPD7)-IFR2-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de biochimie et génétique cellulaires (IBGC), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Pitié-Salpêtrière [APHP], Université Paris Diderot - Paris 7 (UPD7), Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR83, Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Intégrative (IFR-BI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Proteases ,Mitochondrial DNA ,Protease La ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Mitochondrion ,Biology ,Protein oxidation ,Biochemistry ,Oxidative Phosphorylation ,Cell Line ,Mitochondrial Proteins ,Protein Carbonylation ,HeLa ,Small hairpin RNA ,03 medical and health sciences ,0302 clinical medicine ,Humans ,RNA, Small Interfering ,Promoter Regions, Genetic ,030304 developmental biology ,0303 health sciences ,[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology ,General Medicine ,Transfection ,Fibroblasts ,biology.organism_classification ,Molecular biology ,Mitochondria ,Cell biology ,Phenotype ,Gene Expression Regulation ,Organ Specificity ,Cell culture ,Doxycycline ,bacteria ,Reactive Oxygen Species ,Oxidation-Reduction ,030217 neurology & neurosurgery ,HeLa Cells - Abstract
International audience; : ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Lon protease is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Lon, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to loose integrity of mitochondrial genome and to be respiratory deficient. In order to address the role of Lon in mitochondrial functionality in human cells, we have set up a HeLa cell line stably transfected with a vector expressing a shRNA under the control of a promoter which is inducible with doxycycline. We have demonstrated that reduction of Lon protease results in a mild phenotype in this cell line in contrast with what have been observed in other cell types such as WI-38 fibroblasts. Nevertheless, deficiency in Lon protease led to an increase in ROS production and to an accumulation of carbonylated protein in the mitochondria. Our study suggests that Lon protease has a wide variety of targets and is likely to play different roles depending of the cell type.
- Published
- 2014
- Full Text
- View/download PDF
37. The polypeptide chain release factor eRF1 specifically contacts the s4UGA stop codon located in the A site of eukaryotic ribosomes
- Author
-
Lev L. Kisselev, Ludmila Frolova, Alain Favre, and Laurent Chavatte
- Subjects
Eukaryotic translation ,eIF4A ,Eukaryotic initiation factor ,Transfer RNA ,Eukaryotic Small Ribosomal Subunit ,Biology ,Eukaryotic Ribosome ,Release factor ,Biochemistry ,Molecular biology ,Ribosomal binding site - Abstract
It has been shown previously [Brown, C.M. & Tate, W.P. (1994) J. Biol. Chem. 269, 33164-33170.] that the polypeptide chain release factor RF2 involved in translation termination in prokaryotes was able to photocrossreact with mini-messenger RNAs containing stop signals in which U was replaced by 4-thiouridine (s4U). Here, using the same strategy we have monitored photocrosslinking to eukaryotic ribosomal components of 14-mer mRNA in the presence of tRNA(f)(Met), and 42-mer mRNA in the presence of tRNA(Asp) (tRNA(Asp) gene transcript). We show that: (a) both 14-mer and 42-mer mRNAs crossreact with ribosomal RNA and ribosomal proteins. The patterns of the crosslinked ribosomal proteins are similar with both mRNAs and sensitive to ionic conditions; (b) the crosslinking patterns obtained with 42-mer mRNAs show characteristic modification upon addition of tRNA(Asp) providing evidence for appropriate mRNA phasing onto the ribosome. Similar changes are not detected with the 14-mer mRNA.tRNA(f)(Met) pairs; (c) when eukaryotic polypeptide chain release factor 1 (eRF1) is added to the ribosome.tRNA(Asp) complex it crossreacts with the 42-mer mRNA containing the s(4)UGA stop codon located in the A site, but not with the s(4)UCA sense codon; this crosslink involves the N-terminal and middle domains of eRF1 but not the C domain which interacts with eukaryotic polypeptide chain release factor 3 (eRF3); (d) addition of eRF3 has no effect on the yield of eRF1-42-mer mRNA crosslinking and eRF3 does not crossreact with 42-mer mRNA. These experiments delineate the in vitro conditions allowing optimal phasing of mRNA on the eukaryotic ribosome and demonstrate a direct and specific contact of 'core' eRF1 and s(4)UGA stop codon within the ribosomal A site.
- Published
- 2001
- Full Text
- View/download PDF
38. Speciation analysis for trace levels of selenoproteins in cultured human cells
- Author
-
Juliusz Bianga, Zahia Touat-Hamici, Ryszard Lobinski, Katarzyna Bierla, Laurent Chavatte, Sandra Mounicou, Joanna Szpunar, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), and Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,Proteomics ,GPX1 ,Cytoplasm ,Thioredoxin reductase ,SEP15 ,Biophysics ,GPX4 ,Biochemistry ,Selenoprotein ,Thioredoxin Reductase 1 ,Humans ,[CHIM]Chemical Sciences ,Selenoproteins ,chemistry.chemical_classification ,Chromatography ,integumentary system ,ICP MS ,Hep G2 Cells ,Laser ablation ,HaCaT ,HEK293 Cells ,chemistry ,Female ,Cell line ,ESI Orbitrap MS/MS - Abstract
International audience; A semi-quantitative method was developed for the non-targeted detection of trace levels of human selenoproteins in cytoplasmic cell extracts without the use of radioactive isotopes. The method was based on the direct detection of selenoproteins in iso-electrofocusing (IEF) electrophoretic strips by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). The proteins were identified in the non-ablated parts of the gel corresponding to the LA-ICP MS peak apexes by electrospray Orbitrap MS/MS. The method allowed a high resolution of the selenoproteins (peak width 0.06pH unit) using 3-10 pI strips. The protein detection limits were down to 1ngmL-1 (as Se). The method was applied to the selenoprotein speciation in different human cell lines: Hek293 (kidney), HepG2 (liver), HaCaT (skin) and LNCaP (prostate). The principal proteins found included Selenoprotein 15 (Sep15), Glutathione peroxidase 1 (GPx1) and Glutathione peroxidase 4 (GPx4) and Thioredoxin reductase 1 (TRxR1) and Thioredoxin reductase 2 (TRxR2). Biological significance: Our paper presents the development of a semi-quantitative method for the non-targeted detection of trace levels of human selenoproteins in cytoplasmic cell extracts; it offers a first comprehensive screening of the entire biological selenoproteomes expressed in cell lines without the use of radioactive 75Se. The method was based on the direct detection of selenoproteins in iso-electrofocusing (IEF) electrophoretic strips by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). The proteins were identified in the non-ablated parts of the gel corresponding to the LA-ICP MS peak apexes by electrospray Orbitrap MS/MS. The method allowed a high resolution of the selenoproteins (peak width 0.06pH unit) using 3-10 pI strips. The protein detection limits were down to 1ngmL-1 (as Se); by far the lowest ever reported. The method was applied to the selenoprotein speciation in different human cell lines: Hek293 (kidney), HepG2 (liver), HaCaT (skin) and LNCaP (prostate). The principal proteins found included Selenoprotein 15 (Sep15), Glutathione peroxidase 1 (GPx1) and Glutathione peroxidase 4 (GPx4) and Thioredoxin reductase 1 (TRxR1) and Thioredoxin reductase 2 (TRxR2). The IEF-LA-ICPMS indicates the presence of multiple forms of some selenoproteins which are for the moment impossible to distinguish because of the similarity of the bottom-up, proteomics data sets.
- Published
- 2014
- Full Text
- View/download PDF
39. The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element
- Author
-
Zahia Touat-Hamici, Lynda Latrèche, Olivier Jean-Jean, Laurent Chavatte, Stéphane Duhieu, Traduction eucaryote (TE), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
GPX1 ,Molecular Sequence Data ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,GPX4 ,Gene Expression Regulation, Enzymologic ,chemistry.chemical_compound ,Selenium ,Glutathione Peroxidase GPX1 ,Animals ,Humans ,Phospholipid-hydroperoxide glutathione peroxidase ,Molecular Biology ,3' Untranslated Regions ,SECIS element ,chemistry.chemical_classification ,Glutathione Peroxidase ,Selenocysteine ,Base Sequence ,Glutathione peroxidase ,Inverted Repeat Sequences ,RNA-Binding Proteins ,Cell Biology ,Peptide Elongation Factors ,Phospholipid Hydroperoxide Glutathione Peroxidase ,Rats ,Elongation factor ,HEK293 Cells ,chemistry ,Biochemistry ,Protein Biosynthesis ,Codon, Terminator ,Nucleic Acid Conformation ,Selenoprotein - Abstract
International audience; Selenocysteine insertion into selenoproteins involves the translational recoding of UGA stop codons. In mammals, selenoprotein expression further depends on selenium availability, which has been particularly described for glutathione peroxidase 1 and 4 (Gpx1 and Gpx4). The SECIS element located in the 3′UTR of the selenoprotein mRNAs is a modulator of UGA recoding efficiency in adequate selenium conditions. One of the current models for the UGA recoding mechanism proposes that the SECIS binds SECIS-binding protein 2 (SBP2), which then recruits a selenocysteine-specific elongation factor (EFsec) and tRNASec to the ribosome, where L30 acts as an anchor. The involvement of the SECIS in modulation of UGA recoding activity was investigated, together with SBP2 and EFsec, in Hek293 cells cultured with various selenium levels. Luciferase reporter constructs, in transiently or stably expressing cell lines, were used to analyze the differential expression of Gpx1 and Gpx4. We showed that, upon selenium fluctuation, the modulation of UGA recoding efficiency depends on the nature of the SECIS, with Gpx1 being more sensitive than Gpx4. Attenuation of SBP2 and EFsec levels by shRNAs confirmed that both factors are essential for efficient selenocysteine insertion. Strikingly, in a context of either EFsec or SBP2 attenuation, the decrease in UGA recoding efficiency is dependent on the nature of the SECIS, GPx1 being more sensitive. Finally, the profusion of selenium of the culture medium exacerbates the lack of factors involved in selenocysteine insertion.
- Published
- 2012
- Full Text
- View/download PDF
40. Effects of Lon protease down-regulation on the mitochondrial function and proteome
- Author
-
Aurélien Bayot, Marie-Paule Hamon, Laurent Chavatte, Bertrand Friguet, Monique Gareil, Anne Lombès, Anne-Laure Bulteau, Vieillissement Cellulaire Intégré et Inflammation (VCII), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Gel electrophoresis ,0303 health sciences ,Protease ,Cytoskeleton organization ,medicine.medical_treatment ,Difference gel electrophoresis ,030302 biochemistry & molecular biology ,Respiratory chain ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Protein degradation ,Protein oxidation ,Biochemistry ,03 medical and health sciences ,Physiology (medical) ,Proteome ,medicine ,bacteria ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology - Abstract
The Lon protease is an ATP-dependent protease of the mitochondrial matrix that contributes to the degradation of abnormal and oxidized proteins in this compartment. It is also involved in the stability and regulation of the mitochondrial genome. The effects of a depletion of this protease on the mitochondrial function and the identification of oxidized target proteins of Lon have been performed using as cellular model HeLa cells in which Lon level expression can be down-regulated. The expression level of proteins playing a role in the stress response was first determined. The amount of ClpP, another protease in charge of protein degradation of the mitochondrial matrix, and the amount of several chaperones have been evaluated. The expression level of respiratory chain subunits was also measured with or without Lon depletion. The mitochondrial compartment morphology was monitored in different stress conditions, and measured using a parameter devoted to the evaluation of the mitochondrial dynamics. None of these investigations showed a significant phenotype resulting from Lon down-regulation A possible impact of Lon depletion on oxidized mitochondrial proteins level was then sought. 1D gel electrophoresis after the derivatization of protein carbonyl groups with 2,4-dinitrophenyl hydrazine (DNPH) revealed an increase in carbonylated proteins more important in mitochondrial extracts than in total cellular extracts. 2D difference gel electrophoresis (DIGE) experiments provide results consistent with these observations with some enlightenments. Performed with fluorescent dyes labelling either proteins or their carbonyl groups, these experiments indicated proteome modifications in cells with Lon down-regulation both at the level of protein expression and at the level of protein oxidation. These variations are noted in proteins acting in different cellular activities, i.e. metabolism, protein quality control and cytoskeleton organization.
- Published
- 2014
- Full Text
- View/download PDF
41. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine
- Author
-
Donna M. Driscoll, Laurent Chavatte, Olivier Jean-Jean, and Lynda Latrèche
- Subjects
Untranslated region ,Base pair ,Molecular Sequence Data ,Computational biology ,Biology ,Cell Line ,03 medical and health sciences ,chemistry.chemical_compound ,Genetics ,Humans ,Insertion sequence ,Cloning, Molecular ,3' Untranslated Regions ,SECIS element ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Messenger RNA ,Selenocysteine ,Base Sequence ,Genome, Human ,Sequence Analysis, RNA ,030302 biochemistry & molecular biology ,RNA-Binding Proteins ,chemistry ,Protein Biosynthesis ,Codon, Terminator ,Nucleic Acid Conformation ,RNA ,Selenoprotein ,Selenocysteine incorporation - Abstract
The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3'-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5'-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.
- Published
- 2009
42. The first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30, and S15
- Author
-
Galina Karpova, Alain Favre, Laurent Chavatte, Konstantin Bulygin, and Ludmila Frolova
- Subjects
Ribosomal Proteins ,Molecular Sequence Data ,Thiouridine ,Biology ,Biochemistry ,Ribosome ,Cytosine ,Ribosomal protein ,RNA, Ribosomal, 18S ,Humans ,RNA, Messenger ,Binding site ,Codon ,RNA, Transfer, Asp ,Binding Sites ,Base Sequence ,Templates, Genetic ,Ribosomal RNA ,Stop codon ,Peptide Fragments ,A-site ,Cross-Linking Reagents ,Transfer RNA ,Nucleic Acid Conformation ,Eukaryotic Ribosome ,Ribosomes - Abstract
Messenger RNA analogues (42-mers) containing a GAC codon (aspartic acid) in the middle of their sequence followed by a s(4)UGA stop codon were used to identify the components of the human ribosomal A site in direct contact with the photoactivatable 4-thiouridine (s(4)U) residue. We compared the behavior of the nonphased ribosome-mRNA complex, (-)tRNA(Asp), to the one of the phased complex, (+)tRNA(Asp), in the absence and in the presence of eRF1, the eukaryotic class 1 translation termination factor of human origin. The patterns of cross-links obtained for the three complexes were similar to those previously reported for rabbit ribosomes [Chavatte, L., et al. (2001) Eur. J. Biochem. 268, 2896-2904]. Cross-links involving proteins S2, S3, S3a, and S30 were poorly dependent on the presence of tRNA(Asp) and eRF1. Cross-linking to nucleotide C1696 of 18S rRNA occurred in all complexes, but its yield was at least two times higher in the phased complex with an empty A site than in the nonphased complex or when the A site was occupied by eRF1. In contrast, protein S15 cross-linked only in the phased complex in the absence of eRF1. The data obtained point to notable differences in organization of the decoding site between mammalian and prokaryotic ribosomes and to large internal mobility of the components of the tRNA (eRF1)-free A site.
- Published
- 2005
43. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation
- Author
-
Prabha, Sampath, Barsanjit, Mazumder, Vasudevan, Seshadri, Carri A, Gerber, Laurent, Chavatte, Michael, Kinter, Shu M, Ting, J David, Dignam, Sunghoon, Kim, Donna M, Driscoll, and Paul L, Fox
- Subjects
Inflammation ,Macromolecular Substances ,Ceruloplasmin ,Ligands ,Chromatography, Affinity ,Cell Line ,Amino Acyl-tRNA Synthetases ,Interferon-gamma ,Gene Expression Regulation ,Ribonucleoproteins ,Protein Biosynthesis ,Animals ,Humans ,Nucleic Acid Conformation ,Gene Silencing ,Phosphorylation - Abstract
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.
- Published
- 2004
44. Interplay between selenium level, oxidative stress and selenoprotein expression in Hek293 cell lines
- Author
-
Anne-Laure Bulteau, Laurent Chavatte, Yona Legrain, and Zahia Touat
- Subjects
chemistry.chemical_classification ,Chemistry ,Physiology (medical) ,HEK 293 cells ,medicine ,chemistry.chemical_element ,Selenoprotein ,medicine.disease_cause ,Biochemistry ,Selenium ,Oxidative stress ,Cell biology - Published
- 2012
- Full Text
- View/download PDF
45. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome
- Author
-
Alain Favre, Alim S. Seit-Nebi, Laurent Chavatte, and V. I. Dubovaya
- Subjects
Models, Molecular ,Transcription, Genetic ,Protein Conformation ,Molecular Sequence Data ,Biology ,Ribosome ,General Biochemistry, Genetics and Molecular Biology ,Sense Codon ,RNA, Transfer ,Humans ,Eukaryotic Small Ribosomal Subunit ,Amino Acid Sequence ,RNA, Messenger ,Cloning, Molecular ,Molecular Biology ,Uridine ,Conserved Sequence ,Messenger RNA ,General Immunology and Microbiology ,Base Sequence ,Eukaryotic Large Ribosomal Subunit ,General Neuroscience ,Articles ,Stop codon ,Recombinant Proteins ,Cell biology ,Cross-Linking Reagents ,Biochemistry ,Transfer RNA ,Codon, Terminator ,Nucleic Acid Conformation ,Release factor ,Ribosomes ,Peptide Termination Factors - Abstract
To unravel the region of human eukaryotic release factor 1 (eRF1) that is close to stop codons within the ribosome, we used mRNAs containing a single photoactivatable 4‐thiouridine (s 4 U) residue in the first position of stop or control sense codons. Accurate phasing of these mRNAs onto the ribosome was achieved by the addition of tRNA Asp . Under these conditions, eRF1 was shown to crosslink exclusively to mRNAs containing a stop or s 4 UGG codon. A procedure that yielded 32 P‐labeled eRF1 deprived of the mRNA chain was developed; analysis of the labeled peptides generated after specific cleavage of both wild‐type and mutant eRF1s maps the crosslink in the tripeptide KSR (positions 63–65 of human eRF1) and points to K63 located in the conserved NIKS loop as the main crosslinking site. These data directly show the interaction of the N‐terminal (N) domain of eRF1 with stop codons within the 40S ribosomal subunit and provide strong support for the positioning of the eRF1 middle (M) domain on the 60S subunit. Thus, the N and M domains mimic the tRNA anticodon and acceptor arms, respectively.
- Published
- 2002
46. Finding needles in a haystack
- Author
-
Donna M. Driscoll and Laurent Chavatte
- Subjects
RNA, Transfer, Amino Acyl ,Biology ,Biochemistry ,Genome ,Evolution, Molecular ,chemistry.chemical_compound ,Catalytic Domain ,Complementary DNA ,Genetics ,Animals ,Coding region ,Selenoproteins ,Molecular Biology ,Gene ,Comparative genomics ,chemistry.chemical_classification ,integumentary system ,Selenocysteine ,Scientific Reports ,Computational Biology ,Proteins ,RNA-Binding Proteins ,Genomics ,Genetic code ,Eukaryotic Cells ,chemistry ,Genetic Code ,Codon, Terminator ,Selenoprotein ,Oxidoreductases - Abstract
The dual function of the UGA codon poses a serious challenge for the annotation of genomes. Although UGA usually signals the termination of protein synthesis, it can also be decoded as selenocysteine (Sec), which is incorporated into a small but important group of proteins that are known as selenoproteins. Standard gene‐analysis programs cannot predict whether a UGA codon encodes Sec or Stop. Bioinformatic tools for recognizing selenoproteins in complementary DNA (cDNA) databases are available, but they are not effective when analysing genome sequences. In a recent paper in EMBO reports , Castellano et al (2004) describe a new in silico strategy for identifying selenoprotein genes in eukaryotic genomes. Their findings expand our knowledge of the taxon‐specific distribution of selenoproteins and raise provocative questions about the evolution of Sec. Sec is often present at the active sites of oxidoreductases, where it confers a catalytic advantage over cysteine (Cys). The insertion of Sec into the polypeptide chain during translation requires several trans ‐acting proteins, which synthesize Sec–tRNASec and deliver it to the ribosome (Hatfield & Gladyshev, 2002; Lescure et al , 2002; Driscoll & Copeland, 2003). The alternative decoding of UGA as Sec depends on cis ‐acting sequences in the transcript. The Sec‐insertion sequence (SECIS) element is a stable stem–loop structure that is found in the coding region (prokaryotes) or 3′ untranslated region (archaebacteria and eukaryotes) of selenoprotein messenger RNAs (mRNAs) (Martin & Berry, 2001). The eukaryotic SECIS is conserved across species, although noncanonical SECIS elements have been reported (Fig 1 …
- Published
- 2004
- Full Text
- View/download PDF
47. P13 - Selective up-regulation of human selenoproteins in response to oxidative stress
- Author
-
Zahia, Touat-Hamici, Yona, Legrain, Anne-Laure, Bulteau, and Laurent, Chavatte
- Published
- 2014
- Full Text
- View/download PDF
48. Implication du sélénium et des isotopes du zinc lors de l’infection par le VIH-1
- Author
-
Guillin, Olivia, Centre International de Recherche en Infectiologie (CIRI), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, and Laurent Chavatte
- Subjects
SIDA ,HIV ,VIH ,Sélénoprotéine ,Selenoprotein ,AIDS ,Selenium ,Zinc ,Isotopes ,Oligo-élément ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Trace element ,Infection ,Sélénium - Abstract
Selenium and zinc are two micronutrients essential for numerous physiological and cellular processes. Viruses disrupt the nutrient homeostasis in living organisms they infect, especially the Human immunodeficiency virus (HIV), the etiological agent of the acquired immunodeficiency syndrome (AIDS). Several epidemiological studies have highlighted selenium and zinc deficiencies in patients, showing their importance during this viral infection. These nutrients act differently in Humans ; selenium is present in only 25 proteins, named selenoproteins, and is incorporated in the form of an amino acid, the selenocysteine. Selenoproteins are implicated in the regulation of redox homeostasis in cells and reactive oxygen species detoxification, both pathways being very important during viral infection. Zinc is a cofactor for approximately 3000 human proteins and is important for the structure of zinc finger domains. Zinc finger proteins are implicated in various functions requiring nucleic acid interactions. Among them, NCp7, the HIV-1 nucleocapsid protein is a zinc finger protein essential for the viral structure. Therefore, it is believed that significant amount of zinc accumulates into viral particles. The phenomenon of isotopic fractionation is defined as the partitioning of heavy and light isotopes during a chemical or biological process. Recent studies have reported this phenomenon for various elements (including Zinc) in physiological or pathological context such as cancers but not yet during viral infections. This project is organized around these two essential nutrients during HIV-1 infection of T CD4+ lymphocytes. The first axis of my thesis emphasizes the role of selenium and selenoproteins in a cellular model. Our results show that the selenium levels, in addition to stimulate selenoprotein expression, influence HIV-1 replication. On the other hand, viral infection modulates the expression of several selenoproteins. The second axis which is at a crossroad between geochemistry and biology, investigates the zinc isotopic fractionation during HIV-1 infection. Our results show that viruses are enriched in zinc light isotopes in our cellular model. Furthermore, viruses enriched in light isotopes are more infectious than those enriched in heavy isotopes. Our work aims at characterizing zinc and selenium implication during HIV-1 infection of CD4+ T lymphocytes. This will provide us with a better understanding of the importance of selenium and zinc in HIV-patients, and particularly the way the virus interferes with the homeostasis of these nutrients.; Le sélénium et le zinc sont deux oligo-éléments indispensables à de nombreux processus physiologiques et cellulaires. De manière générale, les virus perturbent la balance des micronutriments des organismes qu’ils infectent, et c’est particulièrement le cas du virus de l’immunodéficience humaine (VIH), responsable du syndrome d’immunodéficience acquise (SIDA). De nombreuses études épidémiologiques ont mis en évidence des carences en sélénium et en zinc chez les patients, démontrant leur importance lors de cette infection virale. Malgré leurs similitudes, ces oligo-éléments ont des mécanismes d’action très différents chez l’Homme. Le sélénium entre dans la composition de seulement 25 protéines, nommées sélénoprotéines, grâce à son incorporation dans la chaine polypeptidique par le biais d’un acide aminé, la sélénocystéine. Les sélénoprotéines sont principalement impliquées dans le maintien de l’homéostasie redox de la cellule et la détoxification des espèces réactives de l’oxygène, des voies particulièrement importantes lors d’infections virales. Le zinc est quant à lui le cofacteur de près de 3000 protéines humaines, permettant, entre autres, la structuration de domaines protéiques nommés doigts de zinc. Ces protéines sont impliquées dans des fonctions très variées qui requièrent des interactions avec des molécules d’acides nucléiques. Parmi les protéines à doigt de zinc, on retrouve la nucléocapside du VIH, NCp7, une protéine de structure indispensable au virus. Le zinc possède 5 isotopes stables et des études montrent que lors de processus biologiques, certains isotopes sont favorisés au dépend des autres, c’est le fractionnement isotopique. Ce phénomène a plus particulièrement été mis en évidence dans des contextes physiologiques ou pathologiques tels que des cancers, mais jamais dans le cas d’infections virales. Ce projet s’articule donc autour de ces deux oligo-éléments essentiels dans le contexte de l’infection des lymphocytes T CD4+ par le VIH-1. La première partie de ce travail s’intéresse au rôle du sélénium et des sélénoprotéines. Nos résultats montrent que le niveau de sélénium, qui régule la production des sélénoprotéines, influence la réplication du VIH et que à l’inverse, l’infection modifie le profil d’expression cellulaire des sélénoprotéines. La seconde partie, à l’interface avec la géochimie, se concentre sur le fractionnement isotopique du zinc dans le contexte infectieux du VIH. Nos résultats montrent que les virus produits en modèle cellulaire sont enrichis en isotopes légers. De plus, les virus enrichis en isotopes légers du zinc ils sont plus infectieux que les virus enrichis en isotopes lourds. Nos travaux visent à mieux caractériser l’implication du zinc et du sélénium lors de l’infection des lymphocytes T CD4+ par le VIH-1 afin de comprendre les effets des carences en ces deux oligo-éléments, leur utilisation par l’organisme et la manière dont le virus les détourne.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.